PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of isothermal holding temperature on retained austenite fraction in medium-carbon Nb/Ti-microalloyed TRIP stee

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the effect of the isothermal holding temperature in a bainitic transformation range on a fraction of retained austenite for a new-developed medium-carbon TRIP steel containing Nb and Ti microadditions. Design/methodology/approach: The thermo-mechanical processing was carried out by a multi-stage compression test using the Gleeble thermomechanical simulator. The steel was subjected to 5 variants of processing with an isothermal bainitic transformation temperature in a range from 250 to 450°C. Identification of structural constituents was done using microscopic observations and X-ray diffraction. To determine the fraction of retained austenite the Rietveld method was applied. Findings: It is possible to obtain a high fraction of retained austenite characterized by the high thermodynamic stability in a C-Mn-Si-Al steel containing 0.43% C. The maximal fraction of austenitic phase equal above 20% was obtained for the wide temperature range of isothermal holding from 350 to 450°C. The maximal carbon content in the retained austenite equal 1.84 wt.% is present for the temperature range from 350 to 400°C. Below 350°C due to relatively low carbon diffusivity and high Msγ temperature, a part of austenite transforms to marteniste. Above 400°C there is still a high fraction of retained austenite but it contains a lower C content. Practical implications: The obtained austenite volume fraction and carbon content in a γ phase determined as a function of isothermal holding temperature can be useful in optimization of thermo-mechanical processing conditions for medium-C TRIP steels. Originality/value: The research was performed on a new-developed medium-carbon Si-Al steel microalloyed with Nb and Ti. There is a lack of data on microstructure and stability of retained austenite in such advanced group of high-strength TRIP steels.
Rocznik
Strony
391--399
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland b Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
Bibliografia
  • [1] B.C. De Cooman, Structure - properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State & Materials Science 8 (2004) 285-303.
  • [2] L.A. Dobrzański, W. Borek, Processes forming the microstructure evolution of high-manganese austenitic steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 397-407.
  • [3] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.
  • [4] A.K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [5] L.A. Dobrzański, W. Borek, Hot-working of advanced high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507-526.
  • [6] B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, S. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review, Archives of Civil and Mechanical Engineering 10/4 (2010) 5-19.
  • [7] X. Wei, Q. Xie, M. Zhang, L. Li, P. Wollants, Influence of strain-induced retained austenite transformation on the dynamic tensile behaviour of TRIP-aided steels, Steel Research International 78/7 (2007) 554-559.
  • [8] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [9] B. Gajda, A.K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [10] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [11] W. Shi, L. Li, Ch. Yang, R.Y. Fu, L. Wang, P. Wollants, Strain-induced transformation of retained austenite in low-carbon low-silicon TRIP steel containing aluminum and vanadium, Materials Science and Engineering A 429 (2006) 247-251.
  • [12] L.A. Dobrzański, W. Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
  • [13] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced-plasticity steel, Metallurgical and Materials Transactions A 34A (2003) 1599-1609.
  • [14] L. Samek, E. De Moor, J. Penning, B.C. De Cooman, Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy multiphase high-strength steels, Metallurgical and Materials Transactions A 37 (2006) 109-124.
  • [15] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels, Metallurgical and Materials Transactions 35A (2004) 2331-2341.
  • [16] A. Grajcar, E. Kalinowska-Ozgowicz, M. Opiela, B. Grzegorczyk, K. Gołombek, Effects of Mn and Nb on the macro- and microsegregation in high-Mn high-Al content TRIP steels, Archives of Materials Science and Engineering 49/1 (2011) 5-14.
  • [17] D. Krizan, B.C. De Cooman, Analysis of the strain-induced martensitic transformation of retained austenite in cold rolled micro-alloyed TRIP steel, Steel Research International 79/7 (2008) 513-522.
  • [18] A. Grajcar, R. Kuziak, W. Zalecki, Designing of cooling conditions for Si-Al microalloyed TRIP steel on the basis of DCCT diagrams, Journal of Achievements in Materials and Manufacturing Engineering 45/2 (2011) 115-124.
  • [19] A. Grajcar, M. Opiela, Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP steels, Journal of Achievements in Materials and Manufacturing Engineering 29 (2008) 71-78.
  • [20] A. Grajcar, H. Krztoń, Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 169-176.
  • [21] Y.K. Lee, H.C. Shin, Y.C. Jang, S.H. Kim, C.S. Choi, Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel, Scipta Materialia 47 (2002) 805-809.
  • [22] H. Matsuda, F. Kitano, K. Hasegawa, T. Urabe, Y. Hosoya, Metallurgy of continuously annealed high strength TRIP steel sweet, Steel Research 73 (2002) 211-217.
  • [23] K. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel, ISIJ International 9 (2000) 902-908.
  • [24] M. Takahashi, Development of high strength steels for automobiles, Nippon Steel Technical Report 88 (2003) 2-7.
  • [25] K. Sugimoto, R. Kikuchi, S. Hashimoto, Development of high strength low alloy TRIP-aided steels with annealed martensite, Steel Research 73 (2002) 253-258.
  • [26] K. Sugimoto, T. Muramatsu, S. Hashimoto, Y. Mukai, Formability of Nb bearing ultra high-strength TRIP-aided sheet steels, Journal of Materials Processing Technology 177 (2006) 390-395.
  • [27] M. Mukherjee, S.B. Singh, O.N. Mohanty, Microstructural characterization of TRIP-aided steels, Materials Science and Engineering A 486 (2008) 32-37.
  • [28] A. Grajcar, Heat treatment and mechanical stability behaviour of medium-carbon TRIP-aided bainitic steel, Archives of Materials Science and Engineering 33/1 (2008) 5-12.
  • [29] G.N. Haidemenopoulos, A.I. Katsamas, N. Aravas, Stability and constitutive modelling in multiphase TRIP steels, Steel Research International 77/9-10 (2006) 720-726.
  • [30] A. Kokosza, J. Pacyna, Mechanical stability of retained austenite in unalloyed structural steels of various carbon content, Archives of Metallurgy and Materials 55/4 (2010) 1001-1006.
  • [31] Y. Tomita, K. Morioka, Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel, Materials Characterization 38 (1997) 243-250.
  • [32] A. Barbacki, E. Mikołajki, M. Popławski, The application of austempering in the formation of microstructure and mechanical properties of medium carbon constructional steels, Archives of Machine Technology and Automatization 24 (2004) 9-16 (in Polish).
  • [33] J. Adamczyk, A. Grajcar, Heat treatment of TRIP-aided bainitic steel, International Journal of Microstructure and Materials Properties 2 (2007) 112-123.
  • [34] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, Tensile behaviour of TRIP-aided multi-phase steels studied by in situ neutron diffraction, Acta Materialia 52 (2004) 5737-5745.
  • [35] L. Zhao, N.H. Van Dijk, E. Bruck, J. Sietsma, S. Van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Materials Science and Engineering A 313 (2001) 145-152.
  • [36] R. Petrov, L. Kestens, Y. Houbaert, Microstructure and microtexture evolution of a TRIP-assisted steel after small deformation studied by EBSD technique, Materials Science Forum 550 (2007) 1-6.
  • [37] A. Grajcar, Morphological features of retained austenite in thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 7-18.
  • [38] B.L. Averbach, M. Cohen, X-Ray determination of retained austenite by integrated intensities, Transactions A.I.M.E. 176 (1948) 401-408.
  • [39] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2 (1969) 65-71.
  • [40] H. Krztoń, D. Kolesnikow, J. Paduch, R. Molenda, Processing and properties of sinters prepared from 316L steel nanopowders, Journal of Achievements in Materials and Manufacturing Engineering 21 (2007) 73-76.
  • [41] R.A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, 1993.
  • [42] SIROQUANT™ Quantitative XRD Software, User’s Guide and Reference, Version 2.5 for Windows, 2000.
  • [43] Z.C. Wang, S.J. Kim, C.G. Lee, T.H. Lee, Bake-hardening behaviour of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets, Journal of Materials Processing Technology 151 (2004) 141-145.
  • [44] B. Mintz, The influence of aluminium on the strength and impact properties of steel, Proceedings of the International Conference on TRIP-aided High Strength Ferrous Alloys, Ghent, 2002, 379-382.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d0d8b1a-2a85-4ab4-bd8e-6e83b5d4abe3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.