PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extreme separations of bottle posts in the southern Baltic Sea – tentative interpretation of an experiment-of-opportunity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During an experiment-of-opportunity in July 2019, 27 drift bottles were released in the southern Baltic Sea. Ten of these bottles were found and reported at locations that were surprisingly widespread. In this study, we explore the chances to reproduce these findings with a numerical drift model. While trajectories may be considered as completely deterministic, in practice their prediction as well as reconstruction has a strong stochastic component, because of ubiquitous gradients on even the smallest scales. We illustrate different aspects of uncertainty including specification of leeway, random dispersion, and stretching along Lagrangian coherent structures. By and large, the results of numerical ensemble simulations seem to be in reasonable agreement with the observational evidence available. Some drift bottle findings suggest a bias in simulations, but without knowing the drift bottles’ full drift paths, a basis for more detailed model tuning is missing.
Czasopismo
Rocznik
Strony
410--422
Opis fizyczny
Bibliogr. 68 poz., map., rys., wykr.
Twórcy
  • Helmholtz-Zentrum Hereon, Geesthacht, Germany
  • Helmholtz-Zentrum Hereon, Geesthacht, Germany
Bibliografia
  • 1. Anderson, R., Porr, C., 2018. Diese Flasche wurde über Bord geworfen’: A message in a bottle from the German barque Paula (1886) discovered at Wedge Island, Western Australia.
  • 2. Andrejev, O., Sokolov, A., Soomere, T., Värv, R., Viikmäe, B., 2010. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Estonian J. Eng. 16, 187-210. https://doi.org/10.3176/eng.2010.3.01
  • 3. Andrejev, O., Soomere, T., Sokolov, A., Myrberg, K., 2011. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53 (1- TI), 309-334. https://doi.org/10.5697/oc.53-1-TI.309
  • 4. Artale, V., Boffetta, G., Celani, A., Cencini, M., Vulpiani, A., 1997. Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids 9, 3162-3171. https://doi.org/10.1063/1.869433
  • 5. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A., 1996. Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett. 77, 1262-1265. https://doi.org/10.1103/PhysRevLett.77.1262
  • 6. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A., 1997. Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. Math. Gen. 30, 1-26. https://doi.org/10.1088/0305-4470/30/i=1/a=003
  • 7. Bennett, A.F., 1984. Relative dispersion: local and nonlocal dynamics. J. Atmos. Sci. 41, 1881-1886. https://doi.org/10.1175/1520-0469(1984)0411881:RDLAND2.0.CO;2
  • 8. Beron-Vera, F.J., LaCasce, J.H., 2016. Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr. 46, 2183-2199. https://doi.org/10.1175/JPO-D-15-0127.1
  • 9. Berta, M., Griffa, A., Özgökmen, T.M., Poje, A.C., 2016. Submesoscale evolution of surface drifter triads in the Gulf of Mexico. Geophys. Res. Lett. 43, 11,751-11,759. https://doi.org/10.1002/2016GL070357
  • 10. Breivik, Ø., Allen, A.A., Maisondieu, C., Olagnon, M., 2013. Advances in search and rescue at sea. Ocean Dynam. 63, 83-88. https://doi.org/10.1007/s10236-012-0581-1
  • 11. Broström, G., Carrasco, A., Hole, L.R., Dick, S., Janssen, F., Mattsson, J., Berger, S., 2011. Usefulness of high resolution coastal models for operational oil spill forecast: the ‘Full City’ accident. Ocean Sci. 7, 805-820. https://doi.org/10.5194/os-7-805-2011
  • 12. Callies, U., 2021. Sensitive dependence of trajectories on tracer seeding positions - coherent structures in German Bight backward drift simulations. Ocean Sci. 17, 1-15. https://doi.org/10.5194/os-17-5272021
  • 13. Callies, U., Plüß, A., Kappenberg, J., Kapitza, H., 2011. Particle tracking in the vicinity of Helgoland, North Sea: A model comparison. Ocean Dynam. 61, 2121-2139. https://doi.org/10. 1007/s10236-0110474-8
  • 14. Callies, U., Groll, N., Horstmann, J., Kapitza, H., Klein, H., Maßmann, S., Schwichtenberg, F., 2017. Surface drifters in the German Bight: model validation considering windage and Stokes drift. Ocean Sci. 13, 799-827. https://doi.org/10.5194/os-13-799-2017
  • 15. Callies, U., Carrasco, R., Floeter, J., Horstmann, J., Quante, M., 2019. Submesoscale dispersion of surface drifters in a coastal sea near offshore wind farms. Ocean Sci. 15, 865-889. https://doi.org/10.5194/os-15-865-2019
  • 16. Corrado, R., Lacorata, G., Palatella, L., Santoleri, R., Zambianchi, E., 2017. General characteristics of relative dispersion in the ocean. Sci. Rep. 7, 46291. https://doi.org/10.1038/ srep46291
  • 17. Davulienè, L., Kelpšaitè, L., Dailidienè, I., 2014. Surface drifter experiment in the south-eastern part of the Baltic Sea. Baltica 27, 151-160. https://doi.org/10.5200/baltica.2014.27.24
  • 18. De Dominicis, L., Leuzzi, G., Monti, P., Pinardi, N., Poulain, P.-M., 2012. Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dynam. 62, 1381-1398. https://doi.org/10.1007/s10236-012-0564-2
  • 19. Delpeche-Ellmann, L., Torsvik, T., Soomere, T., 2016. A comparison of the motions of surface drifters with offshore wind properties in the Gulf of Finland, the Baltic Sea. Estuar. Coast. Shelf Sci. 172, 154-164. https://doi.org/10.1016/j.ecss.2016. 02.009
  • 20. Dick, S., Kleine, E., 2007. The BSH new operational model us ing general vertical coordinates. Environ. Res. Eng. Manag. 3, 18-24.
  • 21. Dick, S., Kleine, E., Müller-Navarra, S. H., Klein, H., Komo, H., 2001. The operational circulation model of BSH (BSHcmod). Model description and validation. Technical Report 29/2001, Bundesamt für Seeschifffahrt und Hydrographie (BSH).
  • 22. Dick, S., Kleine, E., Janssen, F., 2008. A new operational circulation model for the North Sea and Baltic Sea using a novel vertical co-oordinate setup and first results. In: Dalhin, H., Bell, M.J., Flemming, N.C., Petersen, S.E. (Eds.), Coastal to Global Oper ational Oceanography: Achievements and Challenges. Proceed ings of the Fifth International Conference on EuroGOOS, 20-22 May 2008. Exeter, UK.
  • 23. Döös, K., Rupolo, V., Brodeau, L., 2011. Disperion of surface drifters and model-simulated trajectories. Ocean Model. 39, 301-310. https://doi.org/10.1016/j.ocemod.2011.05.005
  • 24. Duran, R., Beron-Vera, F.J., Olascoaga, M.J., 2018. Extracting quasi-steady Lagrangian transport patterns from the ocean cir culation: An application to the Gulf of Mexico. Sci. Rep. 8, 5218. https://doi.org/10.1038/s41598-018-23121-y
  • 25. Gästgifvars, M., Lauri, H., Sarkanen, A., Myrberg, K., Andrejev, O., Ambjörn, C., 2006. Modelling surface drifting of buoys during a rapidly-changing weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci. 70, 567-576. https://doi.org/10. 1016/j.ecss.2006.06.010
  • 26. Geyer, B., Ludwig, T., von Storch, H., 2021. Reproducibility and regional climate models - seeding noise by changing computers and initial conditions. Commun. Earth Environ. 2, 17. https://doi.org/10.1038/s43247-020-00085-4
  • 27. Griffa, A., Piterbarg, L.I., Özgökmen, T., 2004. Predictability of La grangian particle trajectories: Effects of smoothing of the underlying Eulerian flow. J. Mar. Res. 62, 1-35. https://doi.org/10.1357/00222400460744609
  • 28. Haller, G., 2015. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137-162. https://doi.org/10.1146/ annurev-fluid-010313-141322
  • 29. Haller, G., Yuan, G., 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352-370. https://doi.org/10.1016/S0167-2789(00)00142-1
  • 30. Hasselmann, K., 1976. Stochastic climate models. Part I. Theory. Tellus 28, 473-485. https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
  • 31. Heemink, A.W., 1990. Stochastic modelling of dispersion in shallow water. Stoch. Hydrol. Hydraul. 4, 161-174. https://doi.org/10. 1007/BF01543289
  • 32. Hernández-Carrasco, I., López, C., Hernández-García, E., Turiel, A., 2011. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36, 208-218. https://doi.org/10.1016/j.ocemod.2010.12.006
  • 33. Hernández-Carrasco, I., Orfila, A., Rossi, V., Garçon, V., 2018. Effect of small scale transport processes on phytoplankton distribution in coastal seas. Sci. Rep. 8, 8613. https://doi.org/10.1038/s41598-018-26857-9
  • 34. Hufnagl, M., Payne, M., Lacroix, G., Bolle, L.J., Daewel, U., Dickey-Collas, M., Gerkema, T., Huret, M., Janssen, F., Kreus, M., Pätsch, J., Pohlmann, T., Ruardij, P., Schrum, C., Skogen, M.D., Tiessen, M.C.H., Petitgas, P., van Beek, J.K.L., van der Veer, H.W., Callies, U., 2017. Variation that can be expected when using particle tracking models in connectivity studies. J. Sea Res. 127, 133-149. https://doi.org/10.1016/j.seares.2017.04.009
  • 35. Huhn, F., von Kameke, A., Allen-Perkins, S., Montero, P., Venancio, A., Pérez-Muñuzuri, V., 2012. Horizontal Lagrangian transport in a tidal-driven estuary - transport barriers attached to prominent coastal boundaries. Cont. Shelf Res. 39—40, 1-13. https://doi.org/10.1016/j.csr.2012.03.005
  • 36. Huntley, H.S., Lipphardt, B.L., Jacobs, G., Kirwan Jr., A.D., 2015. Clusters, deformation, and dilation: Diagnostics for material accumulation regions. J. Geophys. Res. 120, 6622-6636. https://doi.org/10.1002/2015JC011036
  • 37. Karrasch, D., Haller, G., 2013. Do finite-size Lyapunov exponents detect coherent structures? Chaos 23, 043126. https://doi.org/ 10.1063/1.4837075
  • 38. Kjellsson, J., Döös, K., 2012. Surface drifters and model trajectories in the Baltic Sea. Boreal Environ. Res. 17, 447-459.
  • 39. Koszalka, I., LaCasce, J.H., Orvik, K.A., 2009. Relative dispersion in the Nordic Seas. J. Mar. Res. 67, 411-433. https://doi.org/10. 1357/002224009790741102
  • 40. LaCasce, I.H., 2008. Statistics from Lagrangian observations. Prog. Oceanogr. 77, 1-29. https://doi.org/10.1016/j.pocean.2008 02.002
  • 41. LaCasce, J.H., Ohlmann, C., 2003. Relative dispersion at the sur face of the Gulf of Mexico. J. Mar. Res. 61, 285-312. https:// doi.org/10.1357/002224003322201205
  • 42. Lu, X., Soomere, T., Stanev, E.V., Murawski, J., 2012. Identification of the environmentally save fairway in the South-Western Baltic Sea and Kattegat. Ocean Dynam. 62, 815-829. https://doi.org/10.1007/s10236-012-0532-x
  • 43. Lumpkin, R., Elipot, S., 2010. Surface drifter pair spreading in the North Atlantic. J. Geophys. Res. 115, C12017. https://doi.org/ 10.1029/2010JC006338
  • 44. Meyerjürgens, J., Ricker, M., Schakau, V., Badewien, T.H., Stanev, E.V., 2020. Relative dispersion of surface drifters in the North Sea: The effect of tides on mesoscale diffusivity. J. Geophys. Res. Oceans 124, e2019JC015925. https://doi.org/10. 1029/2019JC015925
  • 45. Müller, G., 1985. Experimentelle Untersuchung der Oberflächendrift mit Hilfe von Driftkarten in der Arkona- und Beltsee - Teil I. Beiträge zur Meereskunde 53, 27-39.
  • 46. Ohlmann, J.C., LaCasce, J.H., Washburn, L., Mariano, A.J., Emery, B., 2012. Relative dispersion observations and trajectory modeling in the Santa Barbara Channel. J. Geophys. Res. 117, C05040. https://doi.org/10.1029/2011JC007810
  • 47. Olascoaga, M.J., Beron-Vera, F.J., Haller, G., Triñanes, J., Iskandarani, M., Coelho, E.F., Haus, B.K., Huntley, H.S., Jacobs, G., Kirwan Jr., A.D., Lipphardt Jr., B.L., Özgökmen, T.M., Reniers, A.J.H.M., Valle-Levinson, A., 2013. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett. 40, 6171-6175. https://doi.org/ 10.1002/2013GL058624
  • 48. Ollitrault, M., Gabillet, C., de Verdière, A.C., 2005. Open ocean regimes of relative dispersion. J. Fluid Mech. 533, 381-407. https://doi.org/10.1017/S0022112005004556
  • 49. Osiński,R., Rak, D., Walczowski, W., Piechura, J., 2010. Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52 (3), 417-429. https://doi.org/10.5697/OC.52-3.417
  • 50. Özgökmen, T.M., Poje, A.C., Fischer, P.F., Childs, H., Krishnan, H., Garth, C., Haza, A.C., Ryan, E., 2012. On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Model. 56, 16-30. https://doi.org/10.1016/j.ocemod.2012.07.004
  • 51. Peacock, T., Haller, G., 2013. Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys. Today 66, 41-47. https:// doi.org/10.1063/PT.3.1886
  • 52. Poje, A.C., Haza, A.C., Özgökmen, T.M., Magaldi, M.G., Garraffo, Z.D., 2010. Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model. 31, 36-50.
  • 53. Poje, A.C., Özgökmen, T.M., Lipphardt, B.L., Haus, B.K., Ryan, E.H., Haza, A.C., Jacobs, G.A., Reniers, A.J.H.M., Olascoaga, M.J., Novelli, G., Griffa, A., Beron-Vera, F.J., Chen, S.S., Coelho, E., Hogan, P.J., Kirwan, A.D., Huntley, H.S., Mariano, A.J., 2014. Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proc. Natl. Acad. Sci. U.S.A (PNAS) 111, 12693-12698. https://doi.org/10.1073/pnas.1402452111
  • 54. Richardson, L.F., 1926. Atmospheric diffusion shown on a distance neighbour graph. Proc. R. Soc. London, Ser. A 110, 709-737. https://doi.org/10.1098/rspa.1926.0043
  • 55. Sansón, L.Z., 2015. Surface dispersion in the Gulf of California. Prog. Oceanogr. 137, 24-37. https://doi.org/10.1016/j. pocean.2015.04.008
  • 56. Sansón, L.Z., Pérez-Brunius, P., Sheinbaum, J., 2017. Surface relative dispersion in the southwestern Gulf of Mexico. J. Phys. Oceanogr. 47, 387-403. https://doi.org/10.1175/JPO-D-16-0105.1
  • 57. Schönfeld, W, 1995. Numerical simulation of the dispersion of artificial radionuclides in the English Channel and the North Sea. J. Marine Syst. 6, 529-544. https://doi.org/10.1016/0924-7963(95)00022-H
  • 58. Schroeder, K., Haza, A.C., Griffa, A., Özgögmen, T.M., Poulain, P.M., Gerin, R., Peggion, G., Rixen, M., 2011. Relative dispersion in the Liguro-Provençal basin: From sub mesoscale to mesoscale. Deep-Sea Res. Pt. I 58, 209-228. https://doi.org/10.1016/j.dsr.2010.11.004
  • 59. Schroeder, K., Chiggiato, J., Haza, A.C., Griffa, A., Özgökmen, T.M., Zanasca, P., Molcard, A., Borghini, M., Poulain, P.M., Gerin, R., Zambianchi, E., Falco, P., Trees, C., 2012. Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett. 39, L11608. https://doi.org/10.1029/2012GL051879
  • 60. Schulz, J.-P., Schättler, U., 2014. Kurze Beschreibung des Lokal-Modells Europa COSMOEU (LME) und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst (DWD). https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_eu/cosmo_eu_dbbeschr_201406.html.
  • 61. Shadden, S.C., Lekien, F., Marsden, J.E., 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271-304. https://doi.org/10.1016/j.physd.2005.10.007
  • 62. Shadden, S.C., Lekien, F., Paduan, J.D., Chavez, F.P., Marsden, J.E., 2009. The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep-Sea Res. Pt. II 56, 161-172. https://doi.org/10.1016/j. dsr2.2008.08.008
  • 63. Smith, S., Banke, E., 1975. Variation of the sea surface drag coefficient with wind speed. Q. J. Roy. Meteor. Soc. 101, 665-673. https://doi.org/10.1002/qj.49710142920
  • 64. Stanev, E.V., Badewien, T.H., Freund, H., Grayek, S., Hahner, F., Meyerjürgens, J., Ricker, M., Schöneich-Argent, R.I., Wolff, J.- O., Zielinski, O., 2019. Extreme westward surface drift in the North Sea: Public reports of stranded drifters and Lagrangian tracking. Cont. Shelf Res. 177, 24-32. https://doi.org/10.1016/j.csr.2019.03.003
  • 65. Stommel, H., 1949. Horizontal diffusion due to oceanic turbulence. J. Mar. Res. 8, 199-225. Taylor, G.I., 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196-212. https://doi.org/10.1112/plms/s2-20.1.196
  • 66. Väli, G., Zhurbas, V.M., Laanemets, J., Lips, U., 2018. Clustering of floating particles due to submesoscale dynamics: a simulation study for the Gulf of Finland, Baltic Sea. Fundamentalnaya i Prikladnaya Gidrofizika 11, 21-35. https://doi.org/10.7868/S2073667318020028
  • 67. Viikmäe, B., Torsvik, T., Soomere, T., 2013. Impact of horizontal eddy diffusivity on Lagrangian statistics for coastal pollution from a major marine fairway. Ocean Dynam. 63, 589-597. https://doi.org/10.1007/s10236-013-0615-3
  • 68. Waugh, D.W., Keating, S.R., Chen, M.-L., 2012. Diagnosing ocean stirring: Comparison of relative dispersion and finite-time Lyapunov exponents. J. Phys. Oceanogr. 42, 1173-1185. https://doi.org/10.1175/JPO-D-11-0215.1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d00665a-fd70-4461-a090-2ef495c5a14b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.