PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid assessment of solar PV micro-system energy generation in Poland based on freely pvlib-python library

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poland has experienced a remarkable growth in renewable energy adoption, notably in photovoltaic (PV) solar systems. The majority of installations are prosumer PV micro-installations, exceeding pre dicted capacity targets outlined in the Energy Policy of Poland until 2040. Despite the significant growth in installed PV capacity, there is still a lack of comprehensive research focusing on fast assess ment of energy generation capacity for solar PV micro-systems. This study aims to address this gap by providing a comprehensive analysis of energy production potential across different configurations and locations in Poland. Using geocoding techniques, solar irradiation data from PVGIS database and pvlib-python library, a methodology was developed to rapidly estimate energy generation from 1 kWp solar PV systems . Results reveal spatial disparities in energy yield from solar PV micro installations in Poland, influenced by factors such as geographical location and panel orientation and inclination. Recognizing that the presented energy indicators provide valuable initial parameters for determining solar PV system power output, this data can serve as a critical reference point for stakeholders, assist ing them in estimating potential energy generation capacities in different regions of Poland.
Rocznik
Strony
326--332
Opis fizyczny
Bibliogr. 33 poz,. rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dabrowskiego 73, 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dabrowskiego 73, 42-200 Czestochowa, Poland
Bibliografia
  • 1. Akrofi, M.M., Okitasari, M., Qudrat-Ullah, H., 2023, Are households willing to adopt solar home systems also likely to use electricity more efficiently? Empirical insights from Accra, Ghana, Energy Reports, 10, 4170-4182. DOI: 10.1016/j.egyr.2023.10.066
  • 2. Amato, F. Martellozzo, F., Murgante, B., Nole, G. 2016, Urban solar energy potential in Europe, International Conference on Computational Science and Its Applications – ICCSA 2016, LNTCS, Vol. 9788, Springer
  • 3. Arsanjani, J.J., Zipf, A., Mooney, P., Helbich, M., 2015, An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Re search, and Applications. In OpenStreetMap in GIScience, 1-15. DOI: 10.1007/978-3-319-14280-7_1
  • 4. Ballif, C., Haug, FJ., Boccard, M., Verlinden, P.J., Hahn, G., 2022, Status and perspectives of crystalline silicon photovoltaics in research and indus try. Nat Rev Mater, 7, 597–616. DOI: 10.1038/s41578-022-00423-2
  • 5. Biswas, S.; 2023, Optimal investment policy in sharing and standalone econ omy for solar PV panel under operational cost, Sol Energy, 264, 112003. DOI: 10.1016/j.solener.2023.112003
  • 6. Bruce, J., 2023, Solar PV System Losses - How To Calculate Solar Panel Ef ficiency, Available online: https://www.solarempower.com/blog/10-so lar-pv-system-losses-their-impact-on-solar-panel-output/ (accessed on 19 December 2023)
  • 7. Castillo,C.P., Silva F.B., Lavalle, C, 2016, An assessment of the regional po tential for solar power generation in EU-28, Energy Policy, 88, 86-99, DOI: 10.1016/j.enpol.2015.10.004.
  • 8. Chattopadhyay, K., Kies, A., Lorenz, E., von Bremen, L., Heinemann, D., 2017, The impact of different pv module configurations on storage and additional balancing needs for a fully renewable european power system. Renew Energy, 113, 176–189. DOI: 10.1016/j.renene.2017.05.069
  • 9. Dharshing, S., 2017, Household Dynamics of Technology Adoption: A Spa tial Econometric Analysis of Residential Solar Photovoltaic (PV) Sys tems in Germany. Energy Res. Soc. Sci., 23, 113–124. DOI: 10.1016/j.erss.2016.10.012
  • 10. ElNozahy, M.S., Salama, M.M.A., 2013, Technical Impacts of Grid-Con nected Photovoltaic Systems on Electrical Networks—A Review. J. Re new. Sustain. Energy, 5. DOI: 10.1063/1.4808264
  • 11. Energy Regulatory Office (ERO), 2024, Statistical information on electricity. Monthly Bulletin, Available online: https://www.are.waw.pl/wydawnic twa#informacja-statystyczna-o-energii-elektrycznej (accessed on 20 February 2024)
  • 12. Ernst, M., Thomson, A., Haedrich, I., Blakers, A., 2016, Comparison of Ground-based and Satellite-based Irradiance Data for Photovoltaic Yield Estimation, Energy Proc., 92, 546-553. DOI: 10.1016/j.egypro. 2016.07.139
  • 13. Github, 2024, Available online: https://github.com/jurand71/pv_en ergy_yield (accessed on 20 February 2024)
  • 14. Holmgren, W.F., Hansen, C.W., Mikofski, M.A., 2018, Pvlib python: a py thon package for modelling solar energy systems. J. Open Source Softw. 3(29), 884. DOI: 10.21105/joss.00884
  • 15. Huld, T., Müller, R., Gambardella, A., 2012, A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86, 1803-1815. DOI: 10.1016/j.solener.2012.03.006
  • 16. Igliński, B., Piechota, G., Kiełkowska, U., 2023, The assessment of solar photovoltaic in Poland: the photovoltaics potential, perspectives and de velopment. Clean Techn. Environ. Policy 25, 281–298. DOI: 10.1007/s10098-022-02403-0
  • 17. International Renewable Energy Agency (IREA), 2023, Renewable Power Generation Costs in 2022, Abu Dhabi, United Arab Emirates
  • 18. Kapica, J., Canales, F.A., Jurasz, J., 2021, Global atlas of solar and wind re sources temporal complementarity. Energy Convers. Manag. 246, 114692. DOI: 10.1016/j.enconman.2021.114692
  • 19. Klepacka, A.M., Florkowski, W.J., Meng, T., 2018, Clean, accessible, and cost-saving: Reasons for rural household investment in solar panels in Poland. Resour. Conserv. Recycl., 139, 338-350. DOI: 10.1016/j.rescon rec.2018.09.004
  • 20. Luthander, R., Widén, J., Nilsson, D., Palm, J., 2015, Photovoltaic self-con sumption in buildings: A review. Appl. Energy, 142. DOI: 10.1016/j.apenergy.2014.12.028
  • 21. Maranda, W., 2019, Analysis of self-consumption of energy from grid-con nected photovoltaic system for various load scenarios with short-term buffering. SN Appl. Sci., 1, 406. DOI: 10.1007/s42452-019-0432-5
  • 22. Martín-Chivelet, N., Montero-Gómez, D., 2017, Optimizing photovoltaic self-consumption in office buildings. Energy Build, 150, 71-80. DOI: 10.1016/j.enbuild.2017.05.073
  • 23. Ministry of Climate and Environment (MCE), 2021, Energy Policy of Poland until 2040, Available online: https://www.gov.pl/web/klimat/polityka energetyczna-polski (accessed on 8 December 2023).
  • 24. Modawy, A.A.A., Min, W., Bing, W., Ishag, A.M., Saleh, B., 2023, Double layer home energy management strategy for increasing PV self-consump tion and cost reduction through appliances scheduling, EV, and storage, Energy Reports, 10, 3494-3518. DOI: 10.1016/j.egyr.2023.10.019
  • 25. Mularczyk, A., Zdonek, I., Turek, M., Tokarski, S., 2022, Intentions to Use Prosumer Photovoltaic Technology in Poland. Energies, 15, 6300. DOI: 10.3390/en15176300
  • 26. Noel, S., 2023, Average cost of solar panels, Available online: https://home guide.com/costs/solar-panel-cost#kwh (accessed on 4 December 2023)
  • 27. Rigo, P.D., Siluk, J.C.M., Lacerda, D.P., Rediske, G., Rosa, C.B., 2023, Model for evaluating the competitive potential of solar PV system install ers, Sol Energy, 265, 112095. DOI: 10.1016/j.solener.2023.112095
  • 28. Rukh Shakeel, S., Yousaf, H., Irfan, M., Rajala A., 2023, Solar PV adoption at household level: Insights based on a systematic literature review, En ergy Strategy Rev., 50, 101178. DOI: 10.1016/j.esr.2023.101178
  • 29. Sirgin, B., Pless, J., Drury, E., 2015, Diffusion into new markets: evolving customer segments in the solar photovoltaics market. Environ. Res. Lett, 10, 084001. DOI: 10.1088/1748-9326/10/8/084001
  • 30. Statistics Poland (SP), 2024, Available online: https://eteryt.stat.gov.pl/ eTeryt/english.aspx (accessed on 5 January 2024)
  • 31. Stowell, D., Kelly, J., Tanner, D., Taylor, J., Jones, E., Geddes, J., Chalstrey, E., 2020, A harmonized, high-coverage, open dataset of solar photovol taic installations in the UK. Sci Data, 7, 394. DOI: 10.1038%2Fs41597 020-00739-0
  • 32. Weniger, J., Tjaden, T., Quaschning, V., 2014, Sizing of Residential PV Bat tery Systems. Energy Proc., 46, 78-87. DOI: 10.1016/j.egypro. 2014.01.160
  • 33. World Bank Group (WBG), 2019, Global Solar Atlas 2.0 – Technical Report
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cfe5130-5b99-4413-92c0-cb751bfcad7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.