Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the analytical expressions describing experimental data of silver, gold, copper and aluminum dielectric permittivity in a wide spectral range are presented. A comparison of samples production techniques, the measurement methods and the experimental data of different authors led to the conclusion that the most valid data are given by MCPEAK et al. (ACS Photonics 2(3),2015, pp. 326–333) and BABAR et al. (Appl. Opt. 54(3), 2015, pp. 477–481), which are close to each other. Thus, the analytical expressions for silver, gold, copper and aluminum dielectric permittivity spectral dependences are based on it. The spectral range in which the dielectric permittivity is represented by the corresponding analytical expression is divided into several intervals.There is a specific function for each wave length range.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
171--184
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Lviv Polytechnic National University, Department of Photonics, 12 S. Bandera St., 79013 Lviv, Ukraine
autor
- Lviv Polytechnic National University, Department of Photonics, 12 S. Bandera St., 79013 Lviv, Ukraine
autor
- Lviv Polytechnic National University, Department of Photonics, 12 S. Bandera St., 79013 Lviv, Ukraine
autor
- Lviv Polytechnic National University, Department of Photonics, 12 S. Bandera St., 79013 Lviv, Ukraine
- University of Rzeszów, College of Natural Sciences, 1 Pigonia St., 35-959 Rzeszów, Poland
Bibliografia
- [1] MAIER S.A., ATWATER H.A., Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, Journal of Applied Physics 98(1), 2005, article 011101, DOI:10.1063/1.1951057.
- [2] MARTIN J., PROUST J., GÉRARD D., PLAIN J., Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films, Optical Materials Express 3(7), 2013, pp. 954–959, DOI:10.1364/OME.3.000954.
- [3] BULAVINETS T., YAREMCHUK I., BOBITSKI YA., Modeling optical characteristics of multilayer nanoparticles of different sizes for applications in biomedicine, [In] Nanophysics, Nanophotonics, Surface Studies, and Applications, [Eds.] O. Fesenko, L. Yatsenko, Springer Proceedings in Physics, Vol. 183.Springer, Cham, 2016, pp. 101–115, DOI:10.1007/978-3-319-30737-4_9.
- [4] WEISMANN M., GALLAGHER D.F.G., PANOIU N.C., Accurate near-field calculation in the rigorous coupled-wave analysis method, Journal of Optics 17(12), 2015, article 125612, DOI:10.1088/2040-8978/17/12/125612.
- [5] ZINENKO T.L., MARCINIAK M., NOSICH A.I., Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization, IEEE Journal of Selected Topics in Quantum Electronics 19(3), 2013, article 9000108, DOI:10.1109/JSTQE.2012.2227685.
- [6] FITIO V.M., BOBITSKI YA.V., Resonance effects in a dielectric grating; total absorption of electro-magnetic waves by dielectric grating on metal system, Journal of Optics A: Pure and Applied Optics 6(10), 2004, pp. 943–951, DOI:10.1088/1464-4258/6/10/004.
- [7] JOYE C.D., CALAME J.P., COOK A.M., GARVEN M., High-power copper gratings for a sheet-beam traveling-wave amplifier at G-band, IEEE Transactions on Electron Devices 60(1), 2013, pp. 506–509, DOI:10.1109/TED.2012.2226591.
- [8] ZHANG Q., LI G., LIU X., QIAN F., LI Y., SUM T.C., LIEBER C.M., XIONG Q., A room temperature low-threshold ultraviolet plasmonic nanolaser, Nature Communications 5, 2014, article 4953, DOI:10.1038/ncomms5953.
- [9] EUSTIS S., EL-SAYED M.A., Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chemical Society Reviews 35(3), 2006, pp. 209–217, DOI:10.1039/B514191E.
- [10] LIU P., WANG H., LI X., RUI M., ZENG H., Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media, RSС Advances 5(97), 2015, pp. 79738–79745, DOI:10.1039/C5RA14933A.
- [11] STELLE J.M., MORAN C.E., LEE A., AGUIRRE C.M., HALAS N.J., Metallodielectric gratings with subwave length slots: optical properties, Physical Review B 68(20), 2003, article 205103, DOI:10.1103/PhysRevB.68.205103.
- [12] FITIO V.M., Transmissions of metallic gratings with narrow slots, Proc. 8th International Conferenceon Laser and Fiber-Optical Networks Modeling, Kharkiv, 2006, pp. 113–116.
- [13] FITIO V.M., LABA H.P., BOBITSKI YA.V., Absorption of electromagnetic waves into periodic structure and thin film of metal when a resonance of plasmons appears as a result of prism excitation, Telecommunications and Radio Engineering 66(7), 2007, pp. 607–618, DOI:10.1615/TelecomRadEng.v66.i7.40.
- [14] MCPEAK K.M., JAYANTI S.V., KRESS S.J.P., MAYER S., IOTTI S., ROSSINELLI A., NORRIS D.J., Plasmonic films can easily be better: rules and recipe, ACS Photonics 2(3), 2015, pp. 326–333, DOI:10.1021/ph5004237.
- [15] BABAR S., WEAVER J.H., Optical constants of Cu, Ag, and Au revisited, Applied Optics 54(3), 2015, pp. 477–481, DOI:10.1364/AO.54.000477.
- [16] ORDAL M.A., BELL R.J., ALEXANDER R.W., LONG L.L., QUERRY M.R., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Applied Optics 24(24), 1985, 4493–4499, DOI:10.1364/AO.24.004493.
- [17] HAGEMANN H.-J., GUDAT W., KUNZ C., Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3, Journal of the Optical Society of America 65(6), 1975, pp. 742–744, DOI:10.1364/JOSA.65.000742.
- [18] JOHNSON P.B., CHRISTY R.W., Optical constants of the noble metals, Physical Review B 6(12), 1972, pp. 4370–4379, DOI:10.1103/PhysRevB.6.4370.
- [19] OLMON R.L., SLOVICK B., JOHNSON T.W., SHELTON D., OH S.H., BOREMAN G.D., RASCHKE M.B., Optical dielectric function of gold, Physical Review B 86(23), 2012, article 235147, DOI:10.1103/PhysRevB.86.235147.
- [20] WERNER W.S.M., GLANTSCHNIG K., AMBROSCH-DRAXL C., Optical constants and inelastic electron-scattering data for 17 elemental metals, Journal of Physical and Chemical Reference Data 38(4), 2009, pp. 1013–1092, DOI:10.1063/1.3243762.
- [21] STAHRENBERG K., HERRMANN TH., WILMERS K., ESSER N., RICHTER W., LEE M.J.G., Optical properties of copper and silver in the energy range 2.5–9.0 eV, Physical Review B 64(11), 2001, article 115111, DOI:10.1103/PhysRevB.64.115111.
- [22] YANG H.U., D’ARCHANGEL J., SUNDHEIMER M.L., TUCKER E., BOREMAN G.D., RASCHKE M.B., Optical dielectric function of silver, Physical Review B 91(23), 2015, article 235137, DOI:10.1103/PhysRevB.91.235137.
- [23] WU Y., ZHANG C., ESTAKHRI N.M., ZHAO Y., KIM J., ZHANG M., LIU X.-X., PRIBIL G.K., ALÙ A.,SHIH C.-K., LI X., Intrinsic optical properties and enhanced plasmonic response of epitaxial silver, Advanced Materials 26(35), 2014, pp. 6106–6110, DOI:10.1002/adma.201401474.
- [24] GAO L., LEMARCHAND F., LEQUIME M., Comparison of different dispersion models for single layer optical thin film index determination, Thin Solid Films 520(1), 2011, pp. 501–509, DOI:10.1016/j.tsf.2011.07.028.
- [25] YAKUBOVSKY D.I., ARSENIN A.V., STEBUNOV YU.V., FEDYANIN D.YU., VOLKOV V.S., Optical constants and structural properties of thin gold films, Optics Express 25(21), 2017, pp. 25574–25587, DOI:10.1364/OE.25.025574.
- [26] PALIK E.D., Handbook of Optical Constants of Solids, Academic, San Diego, 1998.
- [27] RAKIĆ A.D., DJURIŠIĆ A.B., ELAZAR J.M., MAJEWSKI M.L., Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied Optics 37(22), 1998, pp. 5271–5283, DOI:10.1364/AO.37.005271.
- [28] TREACY M.M.J., Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings, Physical Review B 66(19), 2002, article 195105, DOI:10.1103/PhysRevB.66.195105.
- [29] RAKIĆ A.D., Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Applied Optics 34(22), 1995, pp. 4755–4767, DOI:10.1364/AO.34.004755.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cfcf9a7-fc58-4310-8d02-1c204ec6d23c