PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examination of the Properties of Samples from Glass-Epoxy Core Rods for Composite Insulators Subjected to DC High Voltage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of an examination performed on a set of samples of glass-epoxy core rods used in composite insulators with silicone rubber housings. The goal of the examination was to test the aging resistance of the core material when exposed to Direct Current (DC) high voltage. Long term exposure of a glass-epoxy core rod to DC high voltage may lead to the gradual degradation of its mechanical properties due to the ion migrations. Electrolysis of the core material (glass fiber) may cause electrical breakdown of the insulators and consequently lead to a major failure. After being aged for 6000 hours under DC high voltage, the samples were subjected to microscopic analysis. Their chemical composition was also examined using Raman spectroscopy and their dielectric losses and conductance in the broad range of frequencies were tested using dielectric spectroscopy.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Electrical Engineering, Wybrzeże Wypiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electrical Engineering, Wybrzeże Wypiańskiego 27, 50-370 Wrocław, Poland
  • Polish Academy of Sciences Institute of Fundamental Technological Research, 5b Pawińskiego Str., 02-106 Warsaw, Poland
  • Polish Academy of Sciences Institute of Fundamental Technological Research, 5b Pawińskiego Str., 02-106 Warsaw, Poland
Bibliografia
  • [1] J. M. George, Z. Lodi, Design and selection criteria for HVDC overhead transmission lines insulators, CIGRE Canada, Conference on Power Systems, Toronto, October 4-6, (2009).
  • [2] M. Kumosa, D. Armentrout, B. Burks, J. Hoffman, L. Kumosa, J. Middleton, P. Predecki, Polymer matrix composites in high voltage transmission line applications, Proc. of the 18th International Conference on Composite Materials, Jeju Island, S. Korea August 21-26, (2011).
  • [3] S. Gubański, Surface Charge & DC Flashover Performance of Composite Insulators, INMR August 13, (2016).
  • [4] P. Morshuis, A. Cavallini, D. Fabiani, G. C. Montanari, C. Azcarraga, Stress Conditions in HVDC Equipment and Routes to in Service Failure, IEEE Transactions on Dielectrics and Electrical Insulation 22, No. 1, February (2015).
  • [5] CIGRE 518, Outdoor Insulation in Polluted Conditions: Guidelines for Selection and Dimensioning, Part 2: The DC case, Working Group C4. 303, December (2012).
  • [6] R. A. Ghunem, Li-Lin Tay, H. Terrab, A. H. El-Hag, Analysis of service-aged 200 kV and 400 kV silicone rubber insulation in the Gulf region, IEEE Electrical Insulation Magazine 23 (6), 3539-3546 (2016).
  • [7] RRUFF Data Base Department of Geosciences, University of Arizona, 1040 E 4th, Tucson, AZ, USA. 85721-0077.
  • [8] Filipecki, M. Sitarz, A. Kocela, K. Kotynia, P. Jelen, K. Filipecka, M. Gaweda, Studying functional properties of hydrogel and silicone-hydrogel contact lenses with PALS, MIR and Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131, 686-690 (2014).
  • [9] K. Filipecka, R. Miedziński, M. Sitarz, J. Filipecki, M. Makowska-Janusik „Optical and vibrational properties of phosphorylcholine-based contact lenses - Experimental and theoretical investigations, Spectrochimica Acta Part A 176, 83-90, (2017)
  • [10] B. Grabowska, M. Sitarz, E. Olejnik, K. Kaczmarska, FT-IR and FT-Raman Studies of Cross-Linking Processes with Ca2+ Ions, Glutaraldehyde and Microwave Radiation For Polymer Composition of Poly(Acrylic Acid)/Sodium Salt of Carboxymethyl Starch - Part I, Spectrochimica Acta Part A 135, 529-535 (2015).
  • [11] B. Grabowska, M. Sitarz, E. Olejnik, K. Kaczmarska, B. Tyliszczak, FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polimer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II, Spectrochimica Acta Part A 151, 27-33 (2015).
  • [12] I. Plesa, P. V. Notingher, S. Schlögl, Ch. Sumereder, M. Muhr, Properties of Polymer Composites Used in High-Voltage Applications, Polymers 8 (5), 173 (2016).
  • [13] Jingkuan Duan, Jun Zhang, Pingkai Jiang, Effect of External Electric Field on Morphologies and Properties of the Cured Epoxy and Epoxy/Acrylate Systems, J. Appl. Polym. Sci. 125 2, 902-914 (2012).
  • [14] G. Babich, G. Cherevashchenko, Modification of the Epoxy Resin by Use of Electric Field, 2011, https://www.pegasus-europe.org/Pegasus_AIAA/papers/ 2011_Babich_Kharkiv.pdf (2011).
  • [15] Y. Cheng, X. Zhao, M. G. Danikas, D. D. Christantoni, P. Zairis, A Study of the Behaviour of Water Droplets under the Influence of Uniform Electric Field in Epoxy Resin Samples, J. El. Eng. 63, 3, 196-200 (2012).
  • [16] A. Krivda, S. A. Page, G. Meier, S. Wright, Dielectric Spectroscopy of Fiber-Reinforced Epoxy Materials, Proc. of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse. France, July 5-9, (2004).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cf9219d-22f5-48c4-adba-f9bb64859449
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.