PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Detonation Performance and Characteristics of 2,4,6-Trinitrotoluene Based Melt Cast Explosives Containing Aluminum by Laser Induced Breakdown Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminized melt cast formulations based on 2,4,6-trinitrotoluene (TNT) deliver an enhanced blast effect because the secondary combustion process of aluminum (Al) occurs beyond the detonation zone. A new method is introduced to assess the detonation performance and characteristics of aluminized TNT explosives on the basis of the laser-induced breakdown spectroscopy (LIBS) technique, in both air and argon (Ar) atmospheres. The plasma emissions of the prepared samples were recorded, where the atomic lines of Al, C, O and H as well as the molecular bands of AlO, CN and C2 were identified. A good discrimination and separation between the samples was possible using LIBS and principle component analysis (PCA), although they had similar atomic compositions. The quantitative calibration curve obtained using the relative intensity of Al/O was used to determine the detonation velocity/pressure and aluminum content of the TNT/Al samples. Comparisons between experimental and theoretical spectra were made using a Nelder–Mead temperature program for CN bands, which provided good agreement with the fitted spectra. Finally, CN vibrational temperatures were calculated from these spectral fittings. These temperatures have higher values in an Ar atmosphere than in an air atmosphere. Thus, increasing the oxygen concentration can decrease these temperatures in TNT/Al standard samples.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
  • Malek-ashtar University of Technology, 83145/115 Shahin-shahr, Islamic Republic of Iran
Bibliografia
  • [1] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. John Wiley and Sons, 2010.
  • [2] Keshavarz, M.H.; Klapötke, T.M. Energetic Compounds: Methods for Prediction of Their Performance. Walter de Gruyter GmbH, 2017.
  • [3] Klapötke, T.M. Chemistry of High-energy Materials. Walter de Gruyter GmbH and Co KG, 2015.
  • [4] Keshavarz, M.H.; Klapötke, T.M.; Klapotke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties. Walter de Gruyter GmbH and Co KG, 2017.
  • [5] Keshavarz, M.H.; Kamalvand, M.; Jafari, M.; Zamani, A. An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives. Cent. Eur. J. Energ. Mater. 2016, 13(2): 381-396.
  • [6] Jafari, M.; Keshavarz, M.H. A Simple Method for Calculating the Detonation Pressure of Ideal and Non-Ideal Explosives Containing Aluminum and Ammonium Nitrate. Cent. Eur. J. Energ. Mater. 2017, 14(4): 966-983.
  • [7] Keshavarz, M.H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants Explos. Pyrotech. 2013, 38(6): 754-760.
  • [8] Keshavarz, M.H.; Hayati, M.; Ghariban-Lavasani, S.; Zohari, N. A New Method for Predicting the Friction Sensitivity of Nitramines. Cent. Eur. J. Energ. Mater. 2015, 12(2): 215-227.
  • [9] Keshavarz, M.H.; Pouretedal, H.R.; Semnani, A. Reliable Prediction of Electric Spark Sensitivity of Nitramines: A General Correlation with Detonation Pressure. J. Hazard. Mater. 2009, 167(1): 461-466.
  • [10] Keshavarz, M.H.; Moradi, S.; Saatluo, B.E.; Rahimi, H.; Madram, A.R. A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds. J. Therm. Anal. Calorim. 2013, 112(3): 1453-1463.
  • [11] Keshavarz, M.H.; Motamedoshariati, H.; Pouretedal, H.R.; Tehrani, M.K.; Semnani, A. Prediction of Shock Sensitivity of Explosives Based on Small-Scale Gap Test. J. Hazard. Mater. 2007, 145(1): 109-112.
  • [12] Anderson, E. Explosives, Tactical Missile Warheads. AIAA 1993, 155: 113.
  • [13] Rezaei, A.H.; Keshavarz, M.H.; Tehrani, M.K.; Darbani, S.M.R.; Farhadian, A.H.; Mousavi, S.J.; Mousaviazar, A. Approach for Determination of Detonation Performance and Aluminum Percentage of Aluminized-Based Explosives by Laser-Induced Breakdown Spectroscopy. Appl. Opt. 2016, 55(12): 3233-3240.
  • [14] Rezaei, A.; Keshavarz, M.; Tehrani, M.K.; Darbani, S. Quantitative Analysis for the Determination of Aluminum Percentage and Detonation Performance of Aluminized Plastic Bonded Explosives by Laser-Induced Breakdown Spectroscopy. Laser Phys. 2018, 28(6): 065605.
  • [15] Makhov, M.; Gogulya, M.; Dolgoborodov, A.Y.; Brazhnikov, M.; Arkhipov, V.; Pepekin, V. Acceleration Ability and Heat of Explosive Decomposition of Aluminized Explosives. Combust. Explos. Shock Waves 2004, 40(4): 458-466.
  • [16] Trzciński, W. Application of a Cylinder Test for Determining Energetic Characteristics of Explosives. J. Tech. Phys. 2001, 42(2): 165-179.
  • [17] Zhou, Z.; Nie, J.; Ou, Z.; Qin, J.; Jiao, Q. Effects of the Aluminum Content on the Shock Wave Pressure and the Acceleration Ability of RDX-Based Aluminized Explosives. J. Appl. Phys. 2014, 116(14): 144906.
  • [18] Vadhe, P.; Pawar, R.; Sinha, R.; Asthana, S.; Rao, A.S. Cast Aluminized Explosives. Combust. Explos. Shock Waves 2008, 44(4): 461-477.
  • [19] Zhang, F.; Anderson, J.; Yoshinaka, A. Post‐Detonation Energy Release from TNTAluminum Explosives. AIP Conference Proceedings, AIP, 2007, 885-888.
  • [20] Lu, J.P.; Dorsett, H.E.; Franson, M.D.; Cliff, M.D. Near-field Performance Evaluations of Alex Effect in Metallised Explosives. DSTO Report, 2003.
  • [21] Swisdak, (Jr) M.M. Explosion Effects and Properties. Part II. Explosion Effects in Water. NSWC Report, 1978.
  • [22] Stromsoe, E.; Eriksen, S. Performance of High Explosives in Underwater Applications. Part 2: Aluminized Explosives. Propellants Explos. Pyrotech. 1990, 15(2): 52-53.
  • [23] Xiang, D.L.; Rong, J.L.; Li, J. Effect of Al/O Ratio on the Detonation Performance and Underwater Explosion of HMX‐based Aluminized Explosives. Propellants Explos. Pyrotech. 2014, 39(1): 65-73.
  • [24] Keicher, T.; Happ, A.; Kretschmer, A.; Sirringhaus, U.; Wild, R. Influence of Aluminium/Ammonium Perchlorate on the Performance of Underwater Explosives. Propellants Explos. Pyrotech. 1999, 24(3): 140-143.
  • [25] Masahiko, N.; Aoki, A.; Miyoshi, H. Effects of Aluminum on the Energy of Underwater Explosion for the Insensitive PBXs. Insensitive Munitions of Technology Symposium 1997, 19-21.
  • [26] Brousseau, P.; Anderson, C.J. Nanometric Aluminum in Explosives. Propellants Explos. Pyrotech. 2002, 27(5): 300-306.
  • [27] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Darbani, S.M.R. Energetic Materials Identification by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network. Appl. Opt. 2017, 56(12): 3372-3377.
  • [28] Farhadian, A.H.; Tehrani, M.K.l Keshavarz, M.H.; Karimi, M.; Darbani, S.M.R. Relationship Between the Results of Laser-Induced Breakdown Spectroscopy and Dynamical Mechanical Analysis in Composite Solid Propellants During their Aging. Appl. Opt. 2016, 55(16): 4362-4369.
  • [29] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Karimi, M.; Darbani, S.M.R.; Rezayi, A.H. A Novel Approach for Investigation of Chemical Aging in Composite Propellants Through Laser-Induced Breakdown Spectroscopy (LIBS). J. Therm. Anal. Calorim. 2016, 124(1): 279-286.
  • [30] Gottfried, J.L.; De Lucia, F.C.; Munson, C.A.; Miziolek, A.W. Laser-Induced Breakdown Spectroscopy for Detection of Explosives Residues: A Review of Recent Advances, Challenges, and Future Prospects. Anal. Bioanal. Chem. 2009, 395(2): 283-300.
  • [31] Parigger, C.G. Atomic and Molecular Emissions in Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B: Atomic Spectroscopy 2013, 79: 4-16.
  • [32] Fernández-Bravo, Á.; Delgado, T.; Lucena, P.; Laserna, J.J. Vibrational Emission Analysis of the CN Molecules in Laser-Induced Breakdown Spectroscopy of Organic Compounds. Spectrochim. Acta, Part B: Atomic Spectroscopy 2013, 89: 77-83.
  • [33] Gottfried, J.L. Laser-Induced Plasma Chemistry of the Explosive RDX with Various Metallic Nanoparticles. Appl. Opt. 2012, 51(7): B13-B21.
  • [34] Lucena, P.; Doña, A.; Tobaria, L.; Laserna, J. New Challenges and Insights in the Detection and Spectral Identification of Organic Explosives by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B: Atomic Spectroscopy 2011, 66(1): 12-20.
  • [35] Lazic, V.; Palucci, A.; Jovicevic, S.; Poggi, C.; Buono, E. Analysis of Explosive and Other Organic Residues by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B: Atomic Spectroscopy 2009, 64(10): 1028-1039.
  • [36] Lasheras, R.; Bello-Galvez, C.; Rodriguez-Celis, E.; Anzano, J. Discrimination of Organic Solid Materials by LIBS Using Methods of Correlation and Normalized Coordinates. J. Hazard. Mater. 2011, 192(2): 704-713.
  • [37] Fink, H.; Panne, U.; Niessner, R. Process Analysis of Recycled Thermoplasts from Consumer Electronics by Laser-Induced Plasma Spectroscopy. Anal. Chem. 2002, 74(17): 4334-4342.
  • [38] Martin, M.Z.; Labbé, N.; Rials, T.G.; Wullschleger, S.D. Analysis of Preservative-Treated Wood by Multivariate Analysis of Laser-Induced Breakdown Spectroscopy Spectra. Spectrochim. Acta, Part B: Atomic Spectroscopy 2005, 60(7): 1179-1185.
  • [39] Alamelu, D.; Sarkar, A.; Aggarwal, S. Laser-Induced Breakdown Spectroscopy for Simultaneous Determination of Sm, Eu and Gd in Aqueous Solution. Talanta 2008, 77(1): 256-261.
  • [40] Pandhija, S.; Rai, N.; Rai, A.K.; Thakur, S.N. Contaminant Concentration in Environmental Samples Using LIBS and CF-LIBS. Appl. Phys. B 2010, 98(1): 231-241.
  • [41] Rai, N.K.; Rai, A.K.; Kumar, A.; Thakur, S.N. Detection Sensitivity of Laser-Induced Breakdown Spectroscopy for Cr II in Liquid Samples. Appl. Opt. 2008, 47(31): G105-G111.
  • [42] Keshavarz, M.H. New Method for Predicting Detonation Velocities of Aluminized Explosives. Combust. Flame 2005, 142(3): 303-307.
  • [43] Keshavarz, M.H. Predicting Maximum Attainable Detonation Velocity of CHNOF and Aluminized Explosives. Propellants Explos. Pyrotech. 2012, 37(4): 489-497.
  • [44] Keshavarz, M.H. Prediction of Detonation Performance of CHNO and CHNOAL Explosives Through Molecular Structure. J. Hazard. Mater. 2009, 166(2-3): 1296-1301.
  • [45] Keshavarz, M.H. Simple Correlation for Predicting Detonation Velocity of Ideal and Non-Ideal Explosives. J. Hazard. Mater. 2009, 166(2-3): 762-769.
  • [46] Ralchenko, Y.; Kramida, A.; Reader, J.; Team, N. NIST Atomic Spectra Database (version 4.0). National Institute of Standards and Technology, Gaithersburg, MD, 2010.
  • [47] Ma, Q.; Dagdigian, P.J. Kinetic Model of Atomic and Molecular Emissions in Laser-Induced Breakdown Spectroscopy of Organic Compounds. Anal. Bioanal. Chem. 2011, 400(10): 3193-3205.
  • [48] Mousavi, S.; Farsani, M.H.; Darbani, S.; Mousaviazar, A.; Soltanolkotabi, M.; Majd, A.E. CN and C2 Vibrational Spectra Analysis in Molecular LIBS of Organic Materials. Appl. Phys. B 2016, 122(5): 106.
  • [49] Dong, M.; Lu, J.; Yao, S.; Zhong, Z.; Li, J.; Li, J.; Lu, W. Experimental Study on the Characteristics of Molecular Emission Spectroscopy for the Analysis of Solid Materials Containing C and N. Opt. Express 2011, 19(18): 17021-17029.
  • [50] Lasheras, R.; Bello-Gálvez, C.; Anzano, J. Quantitative Analysis of Oxide Materials by Laser-Induced Breakdown Spectroscopy with Argon as an Internal Standard. Spectrochim. Acta, Part B: Atomic Spectroscopy 2013, 82: 65-70.
  • [51] Keshavarz, M.H.; Zamani, A.; Shafiee, M. Predicting Detonation Performance of CHNOFCl and Aluminized Explosives. Propellants Explos. Pyrotech. 2014, 39(5): 749-754.
  • [52] Keshavarz, M.H.; Mofrad, R.T.; Poor, K.E.; Shokrollahi, A.; Zali, A.; Yousefi, M.H. Determination of Performance of Non-Ideal Aluminized Explosives. J. Hazard. Mater. 2006, 137(1): 83-87.
  • [53] Zhou, Z.Q.; Nie, J.X.; Zeng, L.; Jin, Z.X.; Jiao, Q.J. Effects of Aluminum Content on TNT Detonation and Aluminum Combustion Using Electrical Conductivity Measurements. Propellants Explos. Pyrotech. 2016, 41(1): 84-91.
  • [54] Keshavarz, M.H.; Zamani, A. A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(1): 13-33.
  • [55] Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of Diatomic Molecular Spectra for Selected Transitions of Aluminum Monoxide, Cyanide, Diatomic Carbon, and Titanium Monoxide. Spectrochim. Acta, Part B: Atomic Spectroscopy 2015, 107: 132-138.
  • [56] Witte, M.; Parigger, C. Laser-Induced Spectroscopy of Graphene Ablation in Air. J. Phys.: Conf. Ser. 548 2014, IOP Publishing 012052.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cef1165-32b4-4123-af27-178f386fd67e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.