PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the heat capacity of a water-ice reservoir as a lower heat source for heat pump - Numerical analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the design of a heat exchanger immersed in a water-ice reservoir and the determination of its heat capacity as a lower heat source for the heat pump. This is an innovative solution, the first project on this scale in Poland. Heat absorption from the water-ice tank took place in three stages: from water at a temperature range of 20oC to 0 oC, from the water-ice phase change at 0oC, and from ice at a temperature range of 0oC to 10oC. The CFD (Computational Fluid Dynamics) analysis of a heat exchanger performance was performed. It required simulation of water natural convection, water-ice phase change, and heat transfer from the ground. The heat flux absorbed in the designed exchanger was calculated based on the current glycol temperature and the implemented COP (Coefficient of Performance) characteristic of the heat pump. This was done via the user-defined function (UDF) available in Ansys FLUENT. The compiled internal software subroutine was defined based on the DEFINE_ADJUST macro. Moreover, the thermal resistance of ice forming on the pipes was included. The numerical analysis indicated that 66097 kWh of heat would be absorbed from the reservoir in 500 hours of exploitation. The volume fraction of water at the end of the simulation was equal to 26.7% and the volume fraction of ice was equal to 73.3%. The CFD simulation confirmed the heat capacity value of the water-ice storage tank which fulfilled the design requirements.
Rocznik
Strony
157--163
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
Bibliografia
  • [1] Craciun, A. V., Sandu, F., & Pana, G. (2010). Monitoring of a ground source heat pump with horizontal collectors. In 12th International Conference on Optimization of Electrical and Electronic Equipment (pp. 1-4). Brasov, Romania. doi: 10.1109/ OPTIM.2010.5510546
  • [2] Condego, P. M., Lorusso, C., De Giorgi, M. G., Marti, R., & D’Agostino, D. (2016). Horizontal air-ground heat exchanger performance and humidity simulation by computational fluid dynamic analysis. Energies, 9(11), 930. doi: 10.3390/en9110930
  • [3] Tarnawski, P. (2015). Analysis of the cooling performance of a tube ground heat exchanger. Czasopismo Chłodnictwo i Klimatyzacja, 8. (in Polish) http://www.chlodnictwoiklimatyzacja.pl/component/content/article/248-wydanie-08-2015/3609- analiza-cfd-wydajnosci-chlodzenia-rurowego-gwc.html [accessed: 18 Sep. 2023].
  • [4] Tarnawski, P. (2015). CFD analysis of ground heat exchanger performance. Czasopismo Rynek Instalacyjny, 6. (in Polish) https://www.rynekinstalacyjny.pl/artykul/projektowanie-co/20326,analiza-cfd-wydajnosci-rurowego-wymiennika-ciepla [accessed: 18 Sep. 2023].
  • [5] Hanuszkiewicz-Drapała, M. (2009). Modelling of thermal phenomena in ground heat exchangers of heating pumps, taking into account the flow resistance of the intermediary medium. Modelowanie Inżynierskie, 38, 5768. ISSN 1896-771X (in Polish).
  • [6] Hanuszkiewicz-Drapała, M., & Bury, T. (2016). Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building. Archives of Thermodynamics, 37(1), 47–72. doi: 10.1515/aoter-2016-0004
  • [7] Jastrzębski, P., & Saługa, P. (2018). Innovative methods of heat storage (in Polish). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 105,225–232. doi: 10.24425/124376
  • [8] Maślankiewicz, P., & Wojciechowski, H. (2017). Heating with freezing water. Instal, 4(2017), 19-23.
  • [9] Mania, T., & Kawa, J. (2015). Heat and cold energy storage systems – practical applications. Energetyka, 1 (in Polish).
  • [10] Jin, W., Suying, W., & Youtao, Z. (2010). Study on ice storage characteristics of a small-scale storage tank filled with ice balls. Asia-Pacific Power and Energy Engineering Conference. doi:10.1109/APPEEC.2010.5448598
  • [11] Bezrodny, M., Prytula, N., & Tsvietkova, M. (2019). Efficiency of heat pump systems of air conditioning for removing excessive moisture. Archives of Thermodynamics, 40(2), 151–165. doi:10.24425/ather.2019.129546
  • [12] ANSYS. (2018). Fluent Theory Guide 19.1, Chapter 18: Solidification and Melting.
  • [13] ANSYS® Academic Associate CFD. ANSYS Fluent User Guide.
  • [14] Selvenes, H., Allouche, Y., Sevault, A., & Hafner, A. (2019). CFD modeling of ice formation and melting in horizontally cooled and heated plates. In Eurotherm Seminar 112: Advances in Thermal Energy Storage, 15-17 May, Lleida, Spain.
  • [15] Ramesh, V., Terala, S., Mazumder, S., Matharu, G., Vaishnv, D., & Ali, S. (2021). Development and validation of a model for efficient simulation of freezing of water in large tanks. Journal of Thermal Science and Engineering Applications, 13(1), 011008.doi: 10.1115/1.4047166
  • [16] Ramesh, V., Terala, S., Mazumder, S., Matharu, G., Vaishnv, D., & Ali, S. (2022). Efficient simulation of freezing of water in large tanks including expansion of ice. Journal of Thermal Science and Engineering Applications, 14(11), 111006. doi: 10.1115/1.4054513
  • [17] Michałek, T., & Kowalewski, T. (2003). Simulations of the water freezing process – numerical benchmarks. Task Quarterly, 7(3),389–408.
  • [18] Muszyński, T., & Kozieł, S. M. (2016). Archives of thermodynamics. Archives of Thermodynamics, 37(3), 45–62. doi:10.1515/aoter-2016-0019
  • [19] Hanuszkiewicz-Drapała, M., & Składzień, J. (2010). Heating system with vapor compressor heat pump and vertical U-tube ground heat exchanger. Archives of Thermodynamics, 31(4), 93–110.doi: 10.2478/v10173-010-0031-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ceedeaa-b72d-41b3-8a40-51b7fd16225d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.