PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of electromagnetic transient physical models considering characterization characteristics on capacitive voltage transformers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The equivalent circuit of traditional capacitive voltage transformers often faces the problem of complex data calculation and difficulty in grasping the internal nonlinear characteristics of transformers when constructing broadband models, resulting in poor power accuracy and stability. Therefore, with the help of electromagnetic transient physical models, the admittance sub model and nonlinear model are established by considering the frequency and saturation characteristics of the transformer. Based on the characteristics of capacitive voltage transformers, the model is processed in parallel to obtain a broadband coupling transformer model. The results showed that the error between the simulated current peak amplitude and voltage results of the model and the measured values was less than 2% and 1%, respectively. In the fault results, the harmonic error of the load voltage of the improved transformer was relatively small, far less than the error result of 2.73% of the traditional transformer. The proposed transformer model can better characterize its characteristics and has good transient response ability, providing reference tools and value for the operation and state detection of power systems.
Rocznik
Strony
467--480
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Office of Construction and Campus Planning, Tsinghua University, Beijing 100084, China
autor
  • Office of Construction and Campus Planning, Tsinghua University, Beijing 100084, China
autor
  • Office of Construction and Campus Planning, Tsinghua University, Beijing 100084, China
autor
  • Office of Construction and Campus Planning, Tsinghua University, Beijing 100084, China
autor
  • Office of Construction and Campus Planning, Tsinghua University, Beijing 100084, China
Bibliografia
  • [1] Frigo G., Agustoni M., Calibration of a digital current transformer measuring bridge: Metrological challenges and uncertainty contributions, Metrology, vol. 1, no. 2, pp. 93–106 (2021), DOI: 10.3390/metrology1020007.
  • [2] Sun K., Qiu W., Yao W., You S., Yin H., Liu Y., Frequency injection based HVDC attack-defense control via squeeze-excitation double CNN, IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5305–5316 (2021), DOI: 10.1109/TPWRS.2021.3078770.
  • [3] Wang J., Chen W., Output characteristics analysis of energy harvesting current transformer, IEEE Sensors Journal, vol. 21, no. 20, pp. 22595–22602 (2021), DOI: 10.1109/JSEN.2021.3107864.
  • [4] Xu J., Gao C., Ding J., Shi X., Feng M., Zhao C., Ding H., High-speed electromagnetic transient (EMT) equivalent modelling of power electronic transformers, IEEE Transactions on Power Delivery, vol. 36, no. 2, pp. 975–986 (2020), DOI: 10.1109/TPWRD.2020.2998498.
  • [5] Mombello E.E., Portillo Á., Flórez G.A.D., New state-space white-box transformer model for the calculation of electromagnetic transients, IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 2615–2624 (2020), DOI: 10.1109/TPWRD.2020.3023824.
  • [6] Lin N., Liu P., Dinavahi V., Component-level thermo-electromagnetic nonlinear transient finite element modeling of solid-state transformer for DC grid studies, IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 938–948 (2020), DOI: 10.1109/TIE.2020.2967687.
  • [7] Gao C., Feng M., Ding J., Zhang H., Xu J.Z., Zhao C.Y., Accelerated electromagnetic transient (EMT) equivalent model of solid-state transformer, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 3721−3732 (2021), DOI: 10.1109/jestpe.2021.3094278.
  • [8] Ying L., Bing L., FangFang S., Gao H., Huang L., Chen X., Energy harvest system research for high precision electronic voltage transformer based on coupling capacitance, Transactions on Electrical and Electronic Materials, vol. 23, no. 6, pp. 624–631 (2022), DOI: 10.1007/s42341-022-00395-8.
  • [9] Shen Z., Wang J., Yan X., Zhao P.C., Cui M., Xu C.J., Cao X., A method for extracting stray capacitance and hysteresis curves of potential transformers based on frequency referring, IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 1897–1905 (2021), DOI: 10.1109/TPWRD.2021.3100602.
  • [10] Wang Q., Fu C., Chu F., Tong Y., Wang X.Z., Ye G.X., Wu X., A quantitative research on the level of disturbance to secondary signal ports of electronic voltage transformers under the operation of gas-insulated switchgear, High Voltage, vol. 7, no. 1, pp. 165–175 (2022), DOI: 10.1049/hve2.12121.
  • [11] Zhang S., Liu H., Liu F., Ma H.J., Shi Y, Gao P., Zhou C., Qin J.G., Research on excitation current control system of the 50 kA superconducting transformer, IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4 (2021), DOI: 10.1109/TASC.2021.3108756.
  • [12] Hu H., Xu Y., Wu X., Lin F.C., Xiao X., Lei M., Passive-compensation clamp-on two-stage current transformer for online calibration, IET Science, Measurement and Technology, vol. 15, no. 9, pp. 730–737 (2021), DOI: 10.1049/smt2.12073.
  • [13] Chen F., Yang C., Guo Z., Wang Y., Ma X., A magnetically controlled current transformer for stable energy harvesting, IEEE Transactions on Power Delivery, vol. 38, no. 1, pp. 212–221 (2022), DOI: 10.1109/TPWRD.2022.3184327.
  • [14] Cao Z., Shi J., Fan B., Induction motor pre-excitation starting based on vector control with flux linkage deviation decoupling, Journal of Vibroengineering, vol. 23, no. 3, pp. 728–743 (2021), DOI: 10.21595/jve.2020.21635.
  • [15] Zhu T., Shao Z., Nie Y., Stray capacitances calculation and harmonic measurement of capacitor voltage transformer, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 6, e3024 (2022), DOI: 10.1002/jnm.3024.
  • [16] Sima W., Peng D., Yang M., Sun P., Zhou B., Xiong Z., Reversible wideband hybrid model of twowinding transformer including the core nonlinearity and EMTP implementation, IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3159–3169 (2020), DOI: 10.1109/TIE.2020.2977544.
  • [17] Lesniewska E., Olak J., Analysis of the operation of cascade current transformers for measurements of short-circuit currents with a non-periodic component with a large time constant of its decay, Energies, vol. 15, no. 8, pp. 2924–2925 (2022), DOI: 10.3390/en15082925.
  • [18] Kraszewski W., Syrek P., Mitoraj M., Methods of ferroresonance mitigation in voltage transformers in a 30 kV power supply network, Energies, vol. 15, no. 24, 9516 (2022), DOI: 10.3390/en15249516.
  • [19] John Y.M., Sanusi A., Yusuf I., Modibbo U.M., Reliability analysis of multi-hardware–software system with failure interaction, Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 38–46 (2023), DOI: 10.47852/bonviewJCCE2202216.
  • [20] Waziri T.A., Yakasai B.M., Assessment of some proposed replacement models involving moderate fix-up, Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 28–37 (2023), DOI: 10.47852/bonviewJCCE2202150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ce62595-ea54-4e3a-a754-f85f159737d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.