PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of NaCl Additive on the Reduction Process of MoO3 to Mo2C by High-Purity CO Gas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, influence of NaCl additive on the transformation process of MoO3 to Mo2C under pure CO atmosphere in the range of room temperature to 1170 K was investigated. The results showed that transformation of MoO3 to Mo2C can be roughly divided into two stages: the reduction of MoO3 to MoO2 (the first stage) and the carburization of MoO2 to Mo2C (the second stage). As to the first stage, it was found that increasing the content of NaCl (from 0 to 0.5 wt.%) was beneficial for the increase of reaction rate due to the nucleation effect; while when the content of NaCl increased to 2 wt.%, the reaction rate will be decreased in turn. As to the second stage, the results showed that reaction rate was decreased with the increase of NaCl, which may be due to the formation of low-melting point eutectic. The work also found that morphology of as-prepared Mo2C was irregular and particle size of it was gradually increased with increasing the NaCl content. According to the results, the possible reaction mechanism was proposed.
Słowa kluczowe
EN
Mo2C   MoO3   CO   NaCl  
Twórcy
autor
  • Wuhan University of Science And Technology, Hubei Provincial Key Laboratory For New Processes of Ironmaking and Steelmaking, Wuhan 430081, China
autor
  • Wuhan University of Science and Technology, Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan 430081, China
  • Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
Bibliografia
  • [1] F.X. Ma, B.H. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Angew. Chem., Int. Ed. 54 (51), 15395-15399 (2015).
  • [2] E.J. Pavlina, J.G. Speer, C.J. Van Tyne, Scripta Mater. 66 (5), 243-246 (2012).
  • [3] N. Perret, X. Wang, L. Delannoy, C. Potvin, C. Louis, M.A. Keane, J. Catal. 286, 172-183 (2012).
  • [4] Y. Chen, S. Choi, L.T. Thompson, J. Catal. 343, 147-156 (2016).
  • [5] H. Wang, S. Liu, K.J. Smith, J. Catal. 369, 427-439 (2019).
  • [6] S. Liu, H. Wang, K.J. Smith, C.S. Kim, Energ. Fuel 31 (6), 6378-6388 (2017).
  • [7] J.C. Schlatter, S.T. Oyama, J.E. Metcalfe III, J.M. Lambert Jr, Ind. Eng. Chem. Res. 27 (9), 1648-1653 (1988).
  • [8] A. Szymańska-Kolasa, M. Lewandowski, C. Sayag, D. Brodzki, G. Djéga-Mariadassou, Catal. Today. 119 (1-4), 35-38 (2007).
  • [9] T.C. Xiao, A.P. York, H. Al-Megren, C.V. Williams, H.T. Wang, M.L. Green, J. Catal. 202 (1), 100-109 (2001).
  • [10] L. Wang, Z.L. Xue, A. Huang, F.F. Wang, ACS Omega. 4 (22), 20036-20047 (2019).
  • [11] L. Wang, G.H. Zhang, K.C. Chou, J. Aust. Ceram. Soc. 54 (1), 97-107 (2018).
  • [12] Z. Lv, J. Dang, Y. Wu, X. Lv, S. Zhang, J. Mater. Sci. 53 (14), 10059-10070 (2018).
  • [13] J. Dang, G. Zhang, L. Wang, K. Chou, P.C. Pistorius, J. Am. Ceram. Soc. 99 (3), 819-824 (2016).
  • [14] J.A. Nelson, M.J. Wagner, Chem. Mater. 14 (4), 1639-1642 (2002).
  • [15] T. Hyeon, M. Fang, K.S. Suslick, J. Am. Chem. Soc. 118 (23), 5492-5493 (1996).
  • [16] X. Liu, N Fechler, M. Antonietti, Chem. Soc. Rev. 42 (21), 8237-65 (2013).
  • [17] L. Zhu, Q. Huang, Ceram. Int. 3 7(1), 239-255 (2011).
  • [18] X. Chen, Y. Li, Y. Li, J. Zhu, S. Jin, L. Zhao, Z. Lei, X. Hong, Ceram. Int. 34 (5), 1253-1259 (2008).
  • [19] X. Liu, C. Gioradno, M. Antonietti, Chem. Mater. 25 (10), 2021-2027 (2013).
  • [20] N. Fechler, T.P. Fellinger, M. Antonietti, Adv. Mater. 25 (1), 75-79 (2013).
  • [21] W. Han, K. Liu, S. Yang, F. Wang. J. Su. B. Jin. H. Li, T. Zhai, Sci. China Chem. 62 (10), 1300-1311 (2019).
  • [22] J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B.I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 556 (7701), 355-359 (2018).
  • [23] X. Hu, P. Huang, B. Jin, X. Zhang, H. Li, X. Zhou, T. Zhai, J. Am. Chem. Soc. 140 (40), 12909-12914 (2018).
  • [24] C. Lan, Z. Zhou, R. Wei, J.C. Ho, Mater. Today Energy 11, 61-82 (2019).
  • [25] Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, X. Duan, Science. 357 (6353), 788-792 (2017).
  • [26] G.H. Zhang, J.J. Li, L. Wang, K.C. Chou, Int. J. Refract. Met. H. 69, 180-188 (2017).
  • [27] G.D. Sun, G.H. Zhang, S.Q. Jiao, K.C. Chou, J. Phys. Chem. C. 122 (18), 10231-10239 (2018).
  • [28] G.D. Sun, G.H. Zhang, K.C. Chou, Int. J. Refract. Met. H. 78, 68-75 (2019).
  • [29] D.A. Johnson, J.H. Levy, J.C. Taylor, A.B. Waugh, J. Brough, Polyhedron. 1 (5), 479-482 (1982)
  • [30] P.V. Aleksandrov, A.S. Medvedev, M.F. Milovanov, V.A. Imideev, S.A. Kotova, D.O. Moskovskikh, Int. J. Miner. Process. 161, 13-20 (2017).
  • [31] S. Li, Y.C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.M. Tang, J. Wang, Q. Zhang, H. Zhu, Nat. Mater. 17 (6), 535-542 (2018).
  • [32] Y.G. Petrosyan, V.M. Zhukovskii, O.A. Ustinov, T.M. Panfilova. Zh. Neorg. Khim. 22 (10), 2841-2844 (1977).
  • [33] L. Wang, C.Y. Bu, G.H. Zhang, J.S. Wang, K.C. Chou, Metall. Mater. Trans. B. 48 (4), 2047-2056 (2017).
  • [34] G.D. Sun, G.H. Zhang, X.P. Ji, J.K. Liu, H. Zhang, K.C. Chou, Int. J. Refract. Met. H. 80, 11-22 (2019).
  • [35] W.V. Schulmeyer, H.M. Ortner, Int. J. Refract. Met. H. 20 (4), 261-269 (2002).
  • [36] J. Dang, G H. Zhang, K.C. Chou, R.G. Reddy, Y. He, Y. Sun, Int. J. Refract. Met. H. 41, 216-223 (2013).
  • [37] J. Dang, G.H. Zhang, K.C. Chou, High Temp. Mater. Proc. 33 (4), 305-312 (2014).
  • [38] R. Burch, J. Chem. Soc., Faraday Trans. 1. 74, 2982 (1978).
  • [39] T. Leisegang, A.A. Levin, J. Walter, D.C. Meyer, Cryst. Res. Technol. 40 (1‐2), 95-105 (2005).
  • [40] L. Wang, G.H. Zhang, K.C. Chou, Int. J. Refract. Met. H. 54, 342-350 (2016).
  • [41] L. Wang, G.H. Zhang, K.C. Chou, J. Aust. Ceram. Soc. 54 (1), 97-107 (2018).
Uwagi
1. The authors gratefully acknowledge the financial support from the Guangdong Province Basic and Applied Basic Research Foundation (2019A1515110361), and the Special Project of Central Government for Local Science and Technology Development of Hubei Province (2019ZYYD076).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ce4dd14-6f89-4b1e-9f6b-6d4004bd44df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.