PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution and health risks assessment of polychlorinated biphenyls in the muscles of Oreochromis niloticus, Cyprinus carpio, and Sander lucioperca, in Al-Massira Dam Lake (Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the contamination levels of non-dioxin-like polychlorinated biphenyls (PCBs) in three fish species (Oreochromis niloticus, Cyprinus carpio, and Sander lucioperca) from Al-Massira Dam, Morocco. The sources of PCBs contamination include industrial activities and sewage treatment plants located in the watershed of the Oum Rbiaa river, and lubricating oils from electric transformers rich in pyralene from nearby industries and towns. Fish samples collected between July 2022 and June 2023 were analyzed using gas chromatography-mass spectrometry to determine PCB concentrations. Results show varying PCB levels across species, with Sander lucioperca (5.084 ± 0.501) exhibiting the highest concentrations, followed by Cyprinus carpio (3.329 ± 0.323) and Oreochromis niloticus (2.167 ± 0.201). Predominant congeners include PCB28, PCB52, PCB101, and PCB180, reflecting species-specific accumulation patterns influenced by metabolic rates and dietary habits. Health risk assessments indicate that while PCB levels generally comply with safety guidelines for fish consumption, lifetime cancer risk (LCR) values exceed acceptable thresholds, particularly for adult and heavy fish consumers. Children, more vulnerable due to higher exposure and dietary habits, also face elevated risks. Non-carcinogenic hazard quotients (HQs) suggest high health risks for local fish consumers, emphasizing the need for ongoing monitoring and dietary management to mitigate PCB exposure. Although fish from Al-Massira Dam generally contain PCB levels below regulatory limits, their bioaccumulative nature underscores the importance of continued environmental monitoring and dietary management to protect public health.
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Environmental, Ecological and Agro-Industrial Engineering Laboratory. Faculty of Sciences and Techniques, Sultan Moulay Slimane University. BP. 523, 23 000 Beni Mellal, Morocco
autor
  • Environmental, Ecological and Agro-Industrial Engineering Laboratory. Faculty of Sciences and Techniques, Sultan Moulay Slimane University. BP. 523, 23 000 Beni Mellal, Morocco
  • Environmental, Ecological and Agro-Industrial Engineering Laboratory. Faculty of Sciences and Techniques, Sultan Moulay Slimane University. BP. 523, 23 000 Beni Mellal, Morocco
  • National Laboratory for Pollution Studies and Monitoring (LNESP), Rabat, Morocco
  • National Laboratory for Pollution Studies and Monitoring (LNESP), Rabat, Morocco
  • National Laboratory for Pollution Studies and Monitoring (LNESP), Rabat, Morocco
  • Environmental, Ecological and Agro-Industrial Engineering Laboratory. Faculty of Sciences and Techniques, Sultan Moulay Slimane University. BP. 523, 23 000 Beni Mellal, Morocco
Bibliografia
  • 1. Abramowicz D.A. (1995). Aerobic and anaerobic PCB biodegradation in the environment. Environmental health perspectives, 103(5), 97–99.
  • 2. Alla S. A. G., Ayoub M. M., Amer M. A., & Thabet, W. M. (2013). Dietary intake of pesticide residues in some Egyptian fruits. Journal of Applied Sciences Research, 9(1), 965–973.
  • 3. Arellano-Aguilar, O., Montoya, R. M., & Garcia, C. M. (2009). Endogenous functions and expression of cytochrome P450 enzymes in teleost fish: a review. Reviews in Fisheries Science, 17(4), 541–556.
  • 4. Arnich N., Tard A., Leblanc J. C., Le Bizec, B., Narbonne, J. F., & Maximilien R. (2009). Dietary intake of non-dioxin-like PCBs (NDL-PCBs) in France, impact of maximum levels in some foodstuffs. Regulatory Toxicology and Pharmacology, 54(3), 287–293.
  • 5. Azekour K., Idir I., Lahrach, N., & El Bouhali B. (2020). Prévalence de l’obésité et du surpoids en milieu scolaire, oasis de Tafilalet, sud-est du Maroc. Pan African Medical Journal, 35(1).
  • 6. Barakat, A. O., Khairy, M., & Aukaily, I. (2017). Bioaccumulation of organochlorine contaminants in fish species from Lake Qarun, a protected area of Egypt. Toxicological & Environmental Chemistry, 99(1), 117–133.
  • 7. Bartalini A., Muñoz-Arnanz J., Baini M., Panti C., Galli M., Giani, D., & Jiménez B. (2020). Relevance of current PCB concentrations in edible fish species from the Mediterranean Sea. Science of The Total Environment, 737, 139520.
  • 8. Beyer A., & Biziuk M. (2009). Environmental fate and global distribution of polychlorinated biphenyls. Reviews of Environmental Contamination and Toxicology, 201, 137–158.
  • 9. Borgå K., McKinney M. A., Routti H., Fernie K. J., Giebichenstein J., Hallanger I., & Muir D. C. (2022). The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environmental Science: Processes & Impacts, 24(10), 1544–1576.
  • 10. Bouchaib, B., Mohamed, F., Larbi, I., & Pierre, L. (2007). Résidus de pesticides organochlorés chez les bivalves et les poissons de la lagune de Moulay Bousselham (Maroc). Afrique Science: Revue Internationale des Sciences et Technologie, 3(1).
  • 11. Bourez S., Van den Daelen C., Le Lay S., Poupaert J., Larondelle Y., Thomé J. P.,... & Debier C. (2013). The dynamics of accumulation of PCBs in cultured adipocytes vary with the cell lipid content and the lipophilicity of the congener. Toxicology letters, 216(1), 40–46.
  • 12. Brázová T., Hanzelová V., Miklisová D., Šalgovičová D., & Turčeková Ľ. (2012). Biomonitoring of polychlorinated biphenyls (PCBs) in heavily polluted aquatic environment in different fish species. Environmental Monitoring and Assessment, 184, 6553–6561.
  • 13. Cassi R., Choyke S., Huertas D., Tolosa I. (2019). IAEA –Environment Laboratories – Marine Environmental Studies Laboratories MEDPOL – Trace Organic Contaminants Training Course.
  • 14. Damstra T. (2002). Potential effects of certain persistent organic pollutants and endocrine disrupting chemicals on the health of children. Journal of Toxicology: Clinical Toxicology, 40(4), 457-465.
  • 15. Elabbas L. E., Westerholm E., Roos R., Halldin K., Korkalainen M., Viluksela M., & Håkansson H. (2013). Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) in foods: exposure and health hazards. In Persistent Organic Pollutants and Toxic Metals in Foods 215–260. Woodhead Publishing.
  • 16. FAO, Food and Agriculture Organization. (2011). Fishery and Aquaculture Statistics, 2009. Statistics and Information Service of the Fisheries and Aquaculture Department/Service. Rome/Roma, Italy:FAO.
  • 17. Häder D. P., Banaszak A. T., Villafañe V. E., Narvarte M. A., González R. A., & Helbling E. W. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total environment, 713, 136586.
  • 18. Henry T. R., & DeVito M. J. (2003). Non-dioxin-like PCBs: effects and consideration in ecological risk assessment. Washington, DC: Ecological Risk Assessment Support Center, Office of Research and Development, US Environmental Protection Agency.
  • 19. Javed M., & Usmani N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 389–403.
  • 20. Jayed, M., Benbrahim, S., Rharbi, N., Lakhlalki, H., Flower, R., Benhra, A., & Bouthir, F. Z. (2017). Contamination of shellfish by organochlorine pesticides and polychlorinated biphenyls in the lagoon of Sidi Moussa (Morocco). Bull. Soc. zool. Fr, 142(1–3), 89–99.
  • 21. Kania-Korwel, I., & Lehmler, H. J. (2016). Chiral polychlorinated biphenyls: absorption, metabolism and excretion—a review. Environmental Science and Pollution Research, 23, 2042–2057.
  • 22. Karl H., & Lahrssen-Wiederholt M. (2009). Dioxin and dioxin-like PCB levels in cod-liver and-muscle from different fishing grounds of the North-and Baltic Sea and the North Atlantic. Journal für Verbraucherschutz und Lebensmittelsicherheit, 4, 247–255.
  • 23. Kasmi K., Belhaj K., Nasri H., Slimani D., Allai L., Mansouri F., & Chafi A. (2023). Heavy Metals Concentration in Sardina pilchardus (Walbaum, 1792) from the Moroccan Mediterranean Coast and Potential Human Health Risk Assessment. Journal of Food Quality, 2023(1), 1455410.
  • 24. Kessabi, M., Elhraiki, A., & Nader, B. (1988). Contamination of urban, industrial and continental waters by chlorinated hydrocarbon pesticides along the Mediterranean coast of Morocco. Science of the total environment, 71(2), 209–214.
  • 25. Kiviranta H. 2005. Exposure and human PCDD/F and PCB body burden in Finland.
  • 26. Klocke C., & Lein P. J. (2020). Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. International journal of molecular sciences, 21(3), 1013.
  • 27. Klocke C., & Lein P. J. (2020). Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. International journal of molecular sciences, 21(3), 1013.
  • 28. Mapcarta. (2024). Mapcarta. Récupéré sur Mapcarta: https://mapcarta.com/
  • 29. MEMEE (Ministre de l’énergie, des mines, de l’eau, et de l’environnement), (2014). Programme de Gestion Sécurisée des PCB au Maroc. Pilier I. PNUD/ONUDI. 123.
  • 30. Mikolajczyk, S., Warenik-Bany, M., Maszewski, S., & Pajurek, M. (2020). Dioxins and PCBs–Environment impact on freshwater fish contamination and risk to consumers. Environmental Pollution, 263, 114611.
  • 31. Mort S. A. (2017). Mass spectrometric methods for the determination of PCB congeners for environmental risk assessment. North Carolina State University.
  • 32. Mrema E. J., Rubino F. M., Mandic-Rajcevic S., Sturchio E., Turci R., Osculati A. N. T. O. N. I. O., & Colosio C. (2014). Exposure to priority organochlorine contaminants in the Italian general population. Part 2: Fifteen priority polychlorinated biphenyl congeners in blood serum. Human & experimental toxicology, 33(2), 170–184.
  • 33. Nikolić D., Poleksić V., Tasić A., Smederevac-Lalić M., Djikanović V., & Rašković B. (2023). Two Age Groups of Adult Pikeperch (Sander lucioperca) as Bioindicators of Aquatic Pollution. Sustainability, 15(14), 11321.
  • 34. Nikolić, D., Skorić, S., Poleksić, V., & Rašković, B. (2021). Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from Garaši reservoir (Serbia) with human health risk assessment. Environmental Science and Pollution Research, 28(38), 53700–53711.
  • 35. Pastorino P., Nocita A., Ciccotelli V., Zaccaroni A., Anselmi S., Giugliano R.,... & Prearo M. (2021). Health risk assessment of potentially toxic elements, persistence of NDL-PCB, PAHs, and microplastics in the translocated edible freshwater Sinotaia quadrata (Gasteropoda, Viviparidae): a case study from the Arno River Basin (Central Italy). Exposure and Health, 13(4), 583–596.
  • 36. Pérez-Fuentetaja, A., Lupton, S., Clapsadl, M., Samara, F., Gatto, L., Biniakewitz, R., & Aga, D. S. (2010). PCB and PBDE levels in wild common carp (Cyprinus carpio) from eastern Lake Erie. Chemosphere, 81(4), 541–547.
  • 37. Pohořelá B., Gramblička T., Doležal M., Dvořáková D., Pulkrabová J., Kouřimská, L.,... & Pánek J. (2022). Nutritional quality and assessment of contaminants in farmed Atlantic salmon (Salmo salar L.) of different origins. Journal of Food Quality, 2022(1), 9318889.
  • 38. Polder, A., Müller, M. B., Lyche, J. L., Mdegela, R. H., Nonga, H. E., Mabiki, F. P.,... & Lie, E. (2014). Levels and patterns of persistent organic pollutants (POPs) in tilapia (Oreochromis sp.) from four different lakes in Tanzania: Geographical differences and implications for human health. Science of the total environment, 488, 252–260.
  • 39. Qu C., Qi S., Yang D., Huang H., Zhang J., Chen W., & Xing X. (2015). Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China. Journal of Geochemical Exploration, 149, 43–51.
  • 40. Ravanipour M., Nabipour I., Yunesian M., Rastkari N., & Mahvi, A. H. (2022). Exposure sources of polychlorinated biphenyls (PCBs) and health risk assessment: a systematic review in Iran. Environmental Science and Pollution Research, 29(37), 55437–55456.
  • 41. Shaw G. R., & Connell D. W. (1984). Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environmental science & technology, 18(1), 18–23.
  • 42. Squadrone S., Mignone W., Abete M. C., Favaro L., Scanzio T., Foglini C., & Prearo M. (2015). Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) in eel, trout, and barbel from the River Roya, Northern Italy. Food Chemistry, 175, 10–15.
  • 43. Thiombane M., Petrik A., Di Bonito M., Albanese S., Zuzolo D., Cicchella D., & De Vivo B. (2018). Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: a preliminary review in central–southern Italian soils. Environmental Science and Pollution Research, 25, 26361–26382.
  • 44. Tian, S., Zhu, L., Bian, J., & Fang, S. (2012). Bioaccumulation and metabolism of polybrominated diphenyl ethers in carp (Cyprinus carpio) in a water/sediment microcosm: important role of particulate matter exposure. Environmental science & technology, 46(5), 2951–2958.
  • 45. Trocino A., Majolini D., & Xiccato G. (2009). PCBs contamination in farmed European sea bass from different Italian rearing systems. Chemosphere, 76(2), 250–254.
  • 46. USEPA. (2000). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: 1: Fish Sampling and Analysis. 3rd. Washington, DC: Office of Water. EPA 823-B-00-008
  • 47. USEPA. (2006). Fish advisories- Where you live.
  • 48. USEPA. (2009). Polychlorinated biphenyls (PCBs) (CASRN 1336-36-3). Toxicity and exposure assessment for children’s health (TEACH) chemical summary.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ce1c485-c9fb-4a15-a3d2-e2be0ca46e79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.