PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective reduction of PbSO4 to PbS with carbon and flotation treatment of synthetic galena

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to recover lead from the zinc leaching residues, a new technology involving selective reduction of lead sulfate to lead sulfide with carbon followed by flotation was investigated. The reduction thermodynamics of PbSO4 was discussed and the effects of molar ratio of C to PbSO4, reaction temperature and time were examined by thermogravimetry (TG) and XRD. Verification tests were further carried out to prove the conclusions of thermodynamic and TG analyses, and the transformation extent could reach 86.45% under the optimal roasting conditions. The prepared galena was then subjected to micro-flotation tests, and the highest lead recovery could reach up to 75.32%.
Słowa kluczowe
Rocznik
Strony
535--546
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China
Bibliografia
  • ALTUNDOGAN H S., ERDEM M., ORHAN R., OZER A., TURNEN F., 1998, Heavy metal pollution potential of zinc leach residues discarded in Cinkur Plant, Tr. J. Eng. Environ. Sci., 22, 167-177.
  • APPELO C A J., POSTMA D., 2010, Geochemistry, groundwater and pollution, Taylor & Francis, 125-234.
  • BABA A., ADEKOLA F., FAPOJUWO D., OTOKHINA F., 2011, Dissolution kinetics and solvent extraction of lead from anglesite ore, Journal of Chemistry Society, 1,157-164.
  • BADANOIU G., BUZATU T., 2012, Structural and physico-chemical analysis of waste from used lead-acid batteries, UPB BuletinStiintific, Series B: Chemistry and Materials Science, 1,245-254.
  • CHERNYSHOVA I V., ANDREEV S I., 1997, Spectroscopic study of galena surface oxidation in aqueous solutions I. Identification of surface species by XPS and ATR/FTIR spectroscopy, Applied Surface Science, 108(2), 225-236.
  • FUERSTENAU M., OLIVAS S., HERRERA-URBINA R., HAN K., 1987, The surface characteristics and flotation behavior of anglesite and cerussite, International Journal of Mineral Processing, 1,73-85.
  • GEN-SHOU Y., 2002, The production practice of tribasic lead sulfate from flue dust lead slag, Hunan Nonferrous Metals(In China), 6, 8-9.
  • GEN-SHOU Y., DUTRIZAC J., CHEN T., 1992, The conversion of lead sulphate to lead carbonate in sodium carbonate media, Hydrometallurgy, 3, 399-421.
  • HERRERA-URBINA R., SOTILLO F., FUERSTENAU D., 1998, Amyl xanthate uptake by natural and sulfide-treated cerussite and galena, International Journal of Mineral Processing, 2,113-128.
  • HERRERA-URBINA R., SOTILLO F., FUERSTENAU D.,1999, Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena, International Journal of Mineral Processing, 3,157-170.
  • JING-YUN Z., ZHU J G., 1991, Using salicylhydroximic acid as collector in flotation of smithonite and lead sulfate, Nonferrous Metals (in China), 4, 27-32.
  • KARNACHUK O., KUROCHKINA S., TUOVINEN O., 2002, Growth of sulfate-reducing bacteria with solid-phase electron acceptors, Applied Microbiology and Biotechnology, 4,482-486.
  • LEFFERTS J., MOLLOY K., ZUCKERMAN J., HAIDUC I., GUTA D., 1980, Oxy and thio phosphorus acid derivatives of tin. 1. Triorganotin (IV) dithiophosphate esters, Inorganic Chemistry, 6,1662-1670.
  • LI M., PENG B., CHAI L Y., PENG N., YAN H., HOU D., 2012, Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, Journal of hazardous materials,6, 323-330.
  • MENAD N., KANARI N., GABALLAH I., 1997, Kinetics of chlorination and carbochlorination of lead sulfate, Thermochimica Acta, 1,61-67.
  • NOWAK P., LAAJALEHTO K., 2000, Oxidation of galena surface-an XPS study of the formation of sulfoxy species, Applied Surface Science, 157(3), 101-111.
  • ONAL G., BULUT G., GUL A., KANGAL O., PEREK K., ARSLAN F., 2005, Flotation of Aladag oxide lead–zinc ores, Minerals Engineering, 2, 279-282.
  • OUTOKUMPU, 2002, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, HSC version 5.0. 2002.
  • OZVERDI A., ERDEM M., 2010, Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment, Hydrometallurgy, 100, 103-109.
  • PACHOLEWSKA, M., 2004, Bioleaching of galena flotation concentrate, Fizykochemiczne Problemy Mineralurgii/Physicochemical Problems of Mineral Processing, 38, 281-290.
  • PENG R., REN H., ZHANG X., 2003, Metallurgy of lead and zinc, Beijing: Science Pres,250-312.
  • QIN W Q.,LIU H., TANG S H., SUN W., 2009, Preparation of lead sulfate powder directly from galena concentrates, Transactions of Nonferrous Metals Society of China, 2,479-483.
  • RASHCHI F., DASHTI A., ARABPOUR-YAZDI M., ABDIZADEH H., 2005, Anglesite flotation: a study for lead recovery from zinc leach residue, Minerals Engineering, 18 ,205-212.
  • RENNERTA T.,2010, Characterization of deposited flue-dust slurry from a former Pb-smelter site and release of inorganic contaminants, in: Proceedings of the 19th world congress of soil science: Soil solutions for a changing world[C]//Brisbane, International Union of Soil Sciences (IUSS), Institut fur Bodenforschung: University fur Bodenkultur, 31-34.
  • SCHRODER-WOLTHOORN A., KUITERT S., DIJKMAN H., HUISMAN J L., 2008, Application of sulfate reduction for the biological conversion of anglesite PbSO4 to galena (PbS), Hydrometallurgy, 1,105-109.
  • SHIRCHINNAMJIL N., CHAO Y., FANG Z H., 2008, Leaching of silver from Boorchi Ag-Pb ore in Mongolia with acidic thiourea solution, Journal of Process Engineering, 4,725-730.
  • SONG S X., LOPEZ-VALDIVIESO A., REYES-BAHENA J L., BERMEJO-PEREZ H I., TRASS O., 2000, Hydrophobic flocculation of galena fines in aqueous suspensions, Journal of Colloid and Interface Science, 227(2), 272-281.
  • SZEKELY J.,1976, Gas-solid reactions, Academic Press, 324-367.
  • VINALS J., NUNEZ C., CARRASCO J., 1991, Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl-CaCl2 media, Hydrometallurgy, 2,179-199.
  • WEIJMA J., HOOP K., BOSMA W., DIJKMAN H., 2002, Biological conversion of anglesite (PbSO4) and lead waste from spent car batteries to galena (PbS), Biotechnology Progress, 4,770-775.
  • WOLTHOORN A., KUITERT S., DIJKMAN H., HUISMAN J L., 2007, Application of sulfate reduction for the biological conversion of anglesite to galena, Advanced Materials Research, 2,197-200.
  • ZHANG T., QIN W Q., YANG C Y., HUANG S P., 2014, Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyldithiophosphate, The Chinese Journal of Nonferrous Metals, 24:1578-1586.
  • ZHU J G., ZHAO J., 1991, The experiments of cupferron as collector in the flotation of lead sulfate and smithsonite, Journal of Central-South Institute of Mining and Metallurgy (in Chinese), 5, 522-528.
  • ZHU J G., ZHU Y S., 1996, The chemical principle of flotation reagents, Central South University Press (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ce0c471-64f9-46f7-9725-7969d3afec79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.