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Entropy generation of a steady Jeffrey fluid flow over a deformable vertical porous layer is analysed with 
consideration of a first-order chemical reaction and thermal diffusion. The porous material is modelled as a 
homogeneous binary mixture of fluid and solid phases where each point in the binary mixture is occupied 
concurrently by the fluid and solid. The combined phenomenon of solid deformation and fluid movement is taken 
into account. The impact of relevant parameters on the fluid velocity, solid displacement, temperature and 
concentration profiles is discussed. It is noticed that the Jeffrey fluid parameter enhances the entropy generation 
number, fluid velocity and solid displacement profiles, but a reverse effect is seen for the Bejan number. Further, 
entropy generation, fluid velocity and solid displacement reduce due to the higher estimates of the chemical 
reaction parameter, while the Bejan number enhances.  
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1. Introduction 

 
 The flow of fluids in the porous media with or without chemical reaction has attracted the attention 
of researchers due to the extensive range of applications in the engineering and technological processes [1]. 
In recent times, Dutta and Kalita [2] studied double-diffusive characteristics of natural convection through a 
porous annulus. Alhadhrami et al. [3] studied the chemically reactive fluid flow of a non-Newtonian fluid 
through a porous medium with non-equilibrium surface conditions. Kalita and Choudhury [4] presented the 
chemically reacting thermophoretic viscous MHD flow in a converging channel through a porous medium. 
Several authors [5-9] have presented similar research. In the above studies, the porous layer was taken as 
fixed. But, the study of flow in a deformable porous layer is also important because of broad applications in 
the fields of biology [10], geology and tissue mechanics for articular cartilage. Biot [11] developed the 
theory of deformation and acoustic propagation of fluid. An important investigation on fluid flow 
phenomena over a thin deformable porous material was carried out by Barry et al. [12]. Again, Sreenadh et 
al. [13] investigated the free convective flow of a Jeffrey fluid through a vertical deformable porous stratum. 
Murthy [14] presented the impact of heat and mass transfer on an MHD flow of a Casson liquid in a 
deformable porous medium considering slip effects.  
 Entropy generation analysis of a system gives an important insight into the power consumption due 
to thermodynamic losses. Optimization of power for a system of fluid motion is achieved by minimizing the 
entropy generation. Bejan [15] explained the thermodynamic properties and procedure for optimization of 
entropy generation for a fluid flow system. Egunjobi and Makinde [16] analyzed the entropy generation for 
an MHD flow of a Newtonian fluid in a channel. Das and Jana [17] presented the entropy generation due to 
an MHD flow through a porous channel with Navier slip. Shit et al. [18] made the entropy generation 
analysis on anMHD flow in an exponentially stretching sheet. Sreenadh et al. [19] presented the entropy 
generation analysis for an MHD Newtonian fluid flow through a vertical porous layer. Several authors, 
Hayat et al. [20], Abdelhameed [21], Panigrahi et al. [22], Ullah et al. [23] analysed the entropy generation 
in different fluid flow systems. 
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 The objective of this paper is to study the entropy generation of Jeffrey fluid flow through a 
deformable porous channel considering a first-order chemical reaction and Soret effect. The expression 
representing solutions for fluid velocity, solid displacement, temperature and concentration profiles are 
obtained analytically. This study extends the work of Sreenadh et al. [13] by adding entropy generation, 
chemical reaction effect and thermal diffusion effect. 
 
2. Mathematical formulation 
 
 Consider a steady fully developed flow of an incompressible Jeffrey fluid through a deformable, 
vertical porous layer in the presence of a first-order chemical reaction and thermal diffusion. The porous 
material is taken as a continuous, homogeneous and isotropic mixture of fluid and solid phases where each 
point in the binary mixture is occupied concurrently by the fluid and solid (Barry et al. [12]). The x - axis is 
taken along the midway of the stratum and the y -axis at right angles to it (Fig1.). The walls of the channel 
are at a distance 2h . The heat is generated inside the fluid by viscous and Darcy dissipations. 
 

 
 

Fig.1. Physical model. 
 
 The governing equations of the flow, following Barry et al. [12] and Sreenadh et al. [13] become 
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The boundary conditions are (Sreenadh et al. [13]) 
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  , , ,w wv 0 u 0 T T C C= = = =       at      ,y h=  
   (2.5) 

  , , ,dv du dT dC0 0 0 0
dy dy dy dy

= = = =       at      y 0=  

 
where u  is the solid displacement, v  is the fluid velocity and 1λ is the Jeffrey fluid parameter. The other 
variables are explained in Nomenclature. 
The following non-dimensional quantities are introduced: 
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Using (2.6), Eqs (2.1)-(2.4), become 
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with restrictions 
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where , , , ,GrBr R Sc Sr  and Gc are the Brinkman number, chemical reaction parameter, Schmidt number, 
Soret number, thermal Grashof number and solutal Grashof number, respectively. 
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Equations (2.7)-(2.10), cannot be solved in closed form. So, to solve them, for Br 1<< , neglecting the 
superior powers Br , we may take  
 
  ( ) ( ) ( ), , , ( , , , ( , , ,0 0 0 0 0 0 0 0v u v u Br v uθ ϕ = θ ϕ + θ ϕ . (2.12) 
 
Using Eq.(2.12) in Eqs (2.7)-(2.10) and equating to zeroth-order and first-order of Br , we obtain  
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with conditions  
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Solving the Eqs (2.13)-(2.20) under conditions (2.21), we get 
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The constants ( to )iA i 1 155= are not presented here for the sake of brevity. 
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3. Results and discussion 
 
 In this section, the impact of physical parameters on the fluid velocity, solid displacement, 
temperature, concentration, entropy generation number and Bejan number is discussed. 
In the absence of a chemical reaction and Sr 0= , the present problem reduces to the problem of Sreenadh et 
al.[13] and the present results have been in good concurrence with the results of Sreenadh et al. [13].  
 For the calculation, the following values are assigned to the physical parameters: 
 
  . , . , . , . , . , ,1 f s0 2 0 7 0 3 0 7 Br 0 02 R 1λ = ϕ = ϕ = δ = = =  
 
  Gr . , . , ,0 5 Gc 0 5 P 5= = = − , .Sr 1 Sc 1= =  
 

 

 
Fig.2. Effect of 1λ on u and v . Fig.3. Effect of δ on u and v . 

 

 
 

Fig.4. Effect of Gr on u and v . Fig.5. Effect of Gc on u and v . 
 
 Figures 2-9 represent the fluid velocity and solid displacement profiles for various values of the 
Jeffrey fluid parameter ( )1λ , drag parameter ( )δ , thermal Grashof number (Gr) , solutal Grashof number 
( )Gc , chemical reaction parameter ( )R , pressure gradient parameter ( )P , volume fraction component of 
fluid phase ( )fϕ  and Soret number ( )Sr , respectively. Figure 2 shows that the effect of the increasing 
Jeffrey fluid parameter enhances both the fluid velocity and solid displacement profiles. Thus, the polymer 
flow significantly accelerates with an increase in the relaxation time (or decreasing retardation time). This 
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model reduces to a Newtonian model when .1 0λ →  Figure 3 shows that the impact of the drag parameter 
increases solid displacement while the fluid velocity decreases. Physically, it can be explained that the drag 
force reduces the fluid velocity and there is less fluid momentum to impede the solid displacement. Thus, the 
fluid velocity reduces and solid displacement increases as the drag is smaller. From Figure 4 it is observed 
that increasing Gr  leads to an enhancement of both the fluid velocity and solid displacement. The similar 
impact can be achieved by increasing Gc  as shown in Fig.5. 
 

 
 

Fig.6. Effect of R on u and v . Fig.7. Effect of P on u and v . 
 

 
 

Fig.8. Effect of fϕ on u and v . Fig.9. Effect of Sr on u and v . 
 

 
 

Fig.10. Effect of Br on temperature. Fig.11. Effect of fϕ  on temperature. 
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Fig.12. Effect of R on concentration. Fig.13. Effect of Sr on concentration. 

 
 Physically, it can be said that when the buoyancy force (thermal or concentration) is more dominant 
in comparison to hydrodynamic viscous force then it promotes both the solid displacement and fluid 
velocity.  Figure 6 shows that the fluid velocity and solid displacement decelerate due to the higher estimates 
of the chemical reaction parameter. Figure 7 shows that the rising of the pressure gradient ( )P  reduces the 
fluid velocity and solid displacement. This can be physically explained considering that an increase in the 
pressure gradient makes the system thicker and consequently decreases the speed of the solid displacement 
and fluid velocity. Figure 8 shows that the fluid velocity and solid displacement is growing with an 
increasing volume fraction coefficient of the fluid. Figure 9 indicates that the fluid velocity and solid 
displacement rise as the Soret number ( )Sr increases. Figure 10 reveals that the temperature profile enhances 
with the growing Brinkman number. This is because of the fact that the Brinkman number enhances the 
effect of viscous dissipation and thus tends to increase the temperature. Figure 11 shows that temperature 
reduces due to an increase in the volume fraction parameter of the fluid. 
 The effect of the chemical reaction parameter ( )R  and Soret number ( )Sr on the concentration 
profile ( )ϕ is shown in Figs 12 and 13. The concentration reduces for higher values of the chemical reaction 
parameter and as opposed to the Soret number. 
 
3.1 Entropy generation  
 
Following Das and Jana [20], entropy generation inside a deformable porous layer is  
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Fig.14. Effect of 1λ on entropy generation. Fig.15. Effect of Br
Ω

on entropy generation. 

 

 
 

Fig.16. Effect of R on entropy generation. Fig.17. Effect of 1λ on Bejan number. 
 

 The impact of the Jeffrey fluid parameter, Br
Ω

 and chemical reaction parameter on entropy 

generation is presented in Figs 14-16. It is observed that the entropy generation number ( )Ns  within the 

deformable porous layer increases when the Jeffrey fluid parameter or Br
Ω

or chemical reaction parameter 

amplify. For irreversibility analysis the pair Br
Ω

is a key parameter as it gives the relative significance of 

viscous effects and temperature gradient entropy generation. Thus, the enhancement in Br
Ω

 will lead to the 
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boost in the fluid friction irreversibility ( )2N  as the entropy generation number enlarges when Br
Ω

 

amplifies. Figures 17-19 represent the influence of ,1
Brλ
Ω

and R ,on the Bejan number ( )Be , respectively. It 

reveals that Be increases with an increase in 1λ (Fig.17) or Br
Ω

(Fig.18), while a reverse effect is seen for the 

chemical reaction parameter (Fig.19). 
 

 
 

Fig.18. Effect of Br
Ω

on Bejan number. Fig.19.Effect of R on Bejan number. 

 
4. Conclusions 
 
Main observations of the above study are as follows: 

− The Jeffrey fluid parameter enhances fluid velocity and the solid displacement significantly. 
− An increase in the drag parameter causes a reduction in the fluid velocity, while the solid displacement 

of the two-phase medium rises. 
− The motion of the fluid flow and solid displacement can be controlled by increasing the pressure 

gradient. 
− To increase the solid displacement and fluid velocity of the two-phase medium, the Soret number or 

solutal Grashof number or thermal Grashof number or volume fraction parameter may be increased. 
− An increase in the chemical reaction parameter causes a reduction in the fluid velocity and solid 

displacement. 
− To increase the temperature of the system the Brinkman number may be increased or the volume 

fraction parameter may be decreased. 
− To increase concentration profile of the system the chemical reaction parameter may be decreased or the 

Soret number may be increased. 
− The entropy generation number may be increased by increasing the Jeffrey fluid parameter or the pair 

Br
Ω

, while it decreases with increasing the chemical reaction parameter. 

− The Bejan number may be decreased by increasing the Jeffrey fluid parameter or the pair Br
Ω

, while it 

increases with increasing chemical reaction parameter. 
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Nomenclature 
 
 Br  − Brinkman number 
 C  − concentration 
 0C  − ambient concentration  

 wC  − concentration at y h=  

 D  − molecular diffusivity 
 g  − acceleration due to gravity 
 Gc  − solutal Grashof number 
 Gr  − thermal Grashof number 
 h  − half the width of the channel 
 K  − drag coefficient 
 0K  − thermal conductivity 

 P  − non-dimensional pressure 
 P  − pressure 
 R  − rate of chemical reaction 
 R  − non-dimensional chemical reaction parameter 
 Sc  − Schmidt number 
 Sr  − Soret number 
 T  − temperature 
 0T  − ambient temperature 

 wT  − temperature at y h=  

 u  − non-dimensional solid displacement 
 u  − solid displacement 
 v  − non-dimensional fluid velocity 
 v  − fluid velocity 
 V  − average velocity 
 ( ,x y ) − non-dimensional Cartesian coordinates 

 ( ,x y ) − Cartesian coordinates 

 β  − coefficient of heat transfer 
 Cβ  − coefficient of mass transfer 

 δ  − drag parameter 
 1λ  − Jeffrey fluid parameter 

 fϕ  − volume fraction component for the fluid phase 

 μ  − Lame constant 
 aμ  − apparent viscosity of the fluid in a porous material  

 fμ  − intrinsic viscosity of the fluid 
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 fρ  − fluid density  
 fυ  − kinematic viscosity of the fluid 

 Ω  − dimensionless ratio of temperature 
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