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Abstract

The actual motivation of this paper is to develop a functional link between artificial neural
network (ANN) with Legendre polynomials and simulated annealing termed as Legendre
simulated annealing neural network (LSANN). To demonstrate the applicability, it is em-
ployed to study the nonlinear Lane-Emden singular initial value problem that governs the
polytropic and isothermal gas spheres. In LSANN, minimization of error is performed
by simulated annealing method while Legendre polynomials are used in hidden layer
to control the singularity problem. Many illustrative examples of Lane-Emden type are
discussed and results are compared with the formerly used algorithms. As well as with
accuracy of results and tranquil implementation it provides the numerical solution over
the entire finite domain.
Keywords: Lane-Emden equations, simulated annealing, legendre polynomials, neural
network

1 Introduction

Polytropic models describe a major role in astro-
nomical dynamics and the theory of stellar structure
and as such the polytropic differential equations are
considered as a criterion to check the strength of the
recently-developed numerical methods. The well-
known polytropic differential equations are Lane-
Emden equations which describe the polytropes in
hydrostatic equilibrium as simple models of stars.
The generalized form of second order Lane-Emden
equation is

d2ϕ
dξ2 +

β
ξ

dϕ
dξ

+ωg(ξ)h(ϕ) = v(ξ), (1)

0 < ξ < 1,β > 0

with initial conditions

ϕ(0) = α ,ϕ′(0) = γ, (2)

or boundary conditions

ϕ(0) = α′ ,ϕ(1) = γ, (3)

for v(ξ) = 0, β = 2, ω = 1,h(ϕ) = ϕn, α = 1, γ = 0

and g(ξ) = 1 in Eqs. (1)-(2) give

d2ϕ
dξ2 +

2
ξ

dϕ
dξ

+ϕn = 0, (4)

which represents the standard Lane-Emden equa-
tion of first kind with polytropic index n. The
solutions of the Lane-Emden equation, which are
known as polytropes, are functions of density ver-
sus radius expressed as ϕ(ξ).The index n determines
the order of that solution. In particular, the solution
only depends on n to give solutions for stars over
a range of total mass and radius. For n = 0 gives
the solution for a constant density incompressible
sphere i.e. 1− ξ2

6 , n = 1 to 1.5. It approximates a
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very cool and redder i.e. late type star such as K,
M, S, or C class of stars with a surface temperature
lower than that of the Sun and n = 3 is the Edding-
ton approximation. There is no analytical solution
for n = 3 but it is useful as it corresponds to the
stellar model of the Sun. Polytropic index n can be
any positive value but exact solutions exist at only
n = 0,1 and 5.

For v(ξ) = 0, α = 0, γ = 0,β = 2, ω = 1, h(ϕ) = eϕ

and g(ξ) = 1 in Eq. (1) gives

d2ϕ
dξ2 +

2
ξ

dϕ
dξ

+ eϕ = 0. (5)

It represents the standard Lane-Emden equation
of second kind. That models the hydrostatic
self-gravitating gas spheres and is well-known as
Bonnor–Ebert gas sphere. If h(ϕ) = e−ϕ is re-
placed in Eq. (5) then the equation models from the
Richardson’s theory of thermionic currents, where
one strives for the density and electric force of an
electron gas in the region of a hot body in ther-
mal equilibrium. Due to vast applicability of Lane-
Emden equations, they are studied widely by differ-
ent researchers with diverse analytical and numeri-
cal methods and in the last few years many numer-
ical and analytical techniques are tested on these
equations. Some of them are discussed below:

– Earlier than 2012 the noteworthy methods were
Adomian decomposition method (ADM) [1] in
2001, by variational iteration method (VIM) [2]
in 2008, by Rational Legendre pseudospectral
[3] in 2009 and by sinc collocation [4] in 2010.

– In 2012, the well-known methods to study the
different cases of Eq. (1) Boubakar polyno-
mial expansion scheme [5], Legendre opera-
tional matrix of differenciation [6] and modified
Legendre spectral method [7]

– In 2013, different cases of these polytropic equa-
tions are studied by second kind Chebyshev op-
erational matrix [8], by Haar wavelet [9] and
by homotopy perturbation method (HPM) and
fourier transform [10].

– In 2014, Lane-Emden-Fowler equations were
studied by Laguerre polynomial approach [11],
Chebychev neural network (ChNN) [12] and by
Differential transformation method (DTM) [13].

– In 2015, the equations were studied by (DTM)
[14], Chebychev wavelet and finite difference
method [15] and by rational approximation [16].

In recent years, the briskly growing field of
connectionist networks took the attention of mathe-
maticians and physicist to use the tools such as ge-
netic learning systems, content-addressable mem-
ory and fuzzy systems to solve physical problems
but the chief tool is ANN. It is a powerful computa-
tional tool having the capability of handling non-
linear and complex features of any physical pro-
cess with a high degree of accuracy. It has been
proven to be a versatile tool for approximating ini-
tial or boundary value problems due to its univer-
sal approximation capability. The ANN has many
benefits over the traditionally used numerical meth-
ods for approximating the initial or boundary value
problems such as the numerical approximation is
continuous over the domain of the integration, a
black box learning approach is followed and capa-
ble of approximating high nonlinear systems. Due
to the described benefits a lot of attention is devoted
to solve the ordinary, partial and fractional differ-
ential equations by using different kinds of ANN.
Different Neural network architectures have been
developed by altering the number of layers, activa-
tion function and training algorithms. The route of
training a neural network comprises of modifying
the values of network adaptive coefficients to boost
network performance. Different researchers applied
different neural architectures to solve differential
equations such as Aarts and Veer [17] employed
the neural algorithm to solve partial differential
equations with multilayer neural structure, linear
and logsigmoid activation function and evolution-
ary algorithm for training the weights. Numer-
ical approximation of ordinary differential equa-
tions was proposed by Meade and Fernandez [18]
by applying feed forward neural network method
along with piecewise splines of Lagrange polyno-
mials. Parisi et al. [19] applied feed forward
neural network approach and in tandem with ge-
netic algorithm for training of network to a non-
steady fixed bed non-catalytic solid-gas reactor sys-
tem. Lagrais et al. [20] implemented ANN coupled
with Broyden–Fletcher–Goldfarb–Shanno algothim
for training to solve ordinary and partial differen-
tial equations. Jianyu et al.[21] proposed radial ba-
sis function neural network with two stage gradient
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descent strategy for partial differential equations.
Malek and Beidokhti [22] presented hybrid neural
network (HNN) by applying the Nelder Meade op-
timization techniques for numerical simulation of
lower as well as higher order ordinary differential
equations (ODEs). Fazayeli et al. proposed im-
provement in back propagation training algorithm
[23]. Parand et al. [24] solved nonlinear Lane-
Emden type equations by unsupervised neural net-
work with stacked generalization and Levenberg-
Marquardt training algorithms. Diverse neural net-
work architectures with different training methods
can be studied in [25-26].

In this paper, we propose an algorithm based
on functional link neural network with Legendre
polynomials and thermal minimizing methodology
known as simulated annealing. Legendre neural
network has already been implemented success-
fully on nonlinear channel equalization for wire-
less communication [27], for prediction of machin-
ery noise in open cast mines [28] and for nonlin-
ear active noise control [29] but here we developed
the network for the numerical simulation of nonlin-
ear ordinary differential equations with singularity
while training of network adaptive coefficients is
performed by simulated annealing. Simulated an-
nealing is a probabilistic form of the gradient de-
scent optimization method that can escape from lo-
cal optima and go on to find the global optimum
in a large search space un like other methods. As
well as finding the global optimum it can handle
the functions that have ridges and plateaus. With so
many benefits over the other optimization methods
it is largely independent of initial values and can
optimize the unconstraint functions. For the case
of Lane-Emden equations simulated annealing re-
vealed the exceptional performance. The structure
of LSANN is one input layer, one hidden layer with
Legendre polynomials and one output layer with
tangent hyperbolic as activation function.

2 Legendre Simulated Annealing
Neural Network

2.1 Legendre neural network

LSANN is the modification of the functional link
artificial neural network (FLANN) initially devel-
oped by Pao [30] to link the gap between the lin-

earity in the single layer neural network and the
computation exhaustive multilayer neural network.
Here Legendre orthogonal polynomials are used
to increase the nonlinear approximation capability
and to overcome the singularity problem of Lane-
Emden equations. Legendre polynomials are sym-
bolically represented by Ll(x)and have the follow-
ing recursive formula

Ll+1 =
(2l +1)
(l +1)

x Ll(x)−
l

(l +1)
Ll−1(x), (6)

for l > 1while L0(x) = 1 and L1(x) = x. Here Leg-
endre polynomials are used for the expansion of
discretized input array. Consider second order dif-
ferential Eqs. (1)-(2) to implement the LSANN
methodology we can write the Eq. (1) as

∇2ϕt(ξ,ψ)−F(ξ,ϕt(ξ,ψ),∇ϕt(ξ,ψ)) = 0, (7)

ξ ∈ [0,1] ,

where ∇is the differential operator, ψ are the net-
work adaptive coefficients (weights) that work like
dendrites in a biological network and ϕt(ξ,ψ)is the
trial solution of Eq. (1) that comprise of two parts
first part satisfies the initial conditions in Eq. (2)
and the second part contains the output of LSANN.
The trial solution can be written as [20].

ϕt(ξ) = α+ξγ+ξ2N(ξ,ψ), (8)

where N(ξ,ψ)is the output of LSANN that can be
described in the Figure 1 and can be calculated by

N(ξ,ψ) = tanh(θ) =
e2θ −1
e2θ +1

, (9)

whereas,

θ =
m

∑
i=1

Li−1(ξ) ψi. (10)

From Eqs. (8)-(10) we get the trial solution in terms
of weights and independent variable.

ϕt(ξ) = α+ξγ+ξ2 e2∑m
i=1 Li−1(ξ) ψi −1

e2∑m
i=1 Li−1(ξ) ψi +1

. (11)

To train the network we will have to minimize the
mean square error (MSE) defined as Eq. 12.

Training of network adaptive coefficients is per-
formed by simulated annealing algorithm that is de-
scribed in Section 2.2. After completing the train-
ing of weights the final values of weights is used in
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E(ψi) =
n

∑
j=1

1
n
(∇2ϕt(ξ j,ψi)−F(ξ j,ϕt(ξ j,ψi),∇ϕt(ξ j,ψi)))

2, ξ ∈ [0,1] (12)

Figure 1. Structure of LSANN

Eq. (11) with a discretized equally spaced array of
points for the independent variable. The array can
be the same that was used in error minimization or
it can be different over the same domain.

2.2 Simulated Annealing

Simulated annealing, a combinatorial optimization
methodology, is inspired from the physical pro-
cess of annealing, where a metal object is gradually
cooled after heating it to an extremely high temper-
ature. The comparison of thermo dynamical anneal-
ing and simulated annealing is shown in the table
given in [31].

Table 1. The comparison of thermodynamical
annealing and simulated annealing

Thermodynamic
Simulation

Combinatorial Optimi-
sation

System States Feasible Solutions
Energy Objective value
Change of State Neighbouring Solutions
Temperature Control Parameter
Frozen State Optimal Solution

The procedure is comprised of perturbation and
evaluation of the solution quality. Here objec-
tive function is mean square error, symbolically
represented byE, that would be minimized by the

stochastic algorithm and the calculated values of
weights would be used to calculate the solutions.
Let represent the problem for m weights as

E(ψ) = {ψ1,ψ2,ψ3, ...,ψm} , (13)

while T is the process temperature,

T = {To,T1,T2, . . . ,Th } . (14)

Here the discrete variable temperature has initial
starting value 1.0 and is decreased at the end of
each iteration by multiplying it by a constant called
αtypical choices are between 0.8 and 0.9. Let q be
the number of iterations performed at each temper-
ature then Eq. (13) can be written as

Ei(ψ) = {ψ1i,ψ2i,ψ3i, ...,ψmi} , i = 1,2,3, . . .q,
(15)

where i is the applied number of perturbations to the
solution and δ1,δ2,δ3, . . . are errors ofE1,E2,E3, . . .
respectively. Probability is calculated by

Pa =

{
e

−k∇δ
T , ∇δ > 1

1 , ∇δ < 1
, (16)

where ∇δ is the difference between the solution er-
ror after and before the consecutive perturbation, T
is the current temperature and k is the suitable con-
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stant. Accepted probability would be in range be-
tween 0.8−0.9while ∇δ can be estimated as

∇δ ≈ 1
Q−1

Q

∑
i=1

δi −
1

Q(Q−1)

Q

∑
i=1

(δi)
2 , (17)

where Q represents the number of perturbations at
each value of temperature. At eachω = 1 iteration,
a new point is randomly generated in the neighbor-
hood of the current point. The radius of the new
point from the current point is based on probability
given by Eq. (16). Implementation of algorithm is
performed here by Mathematica 10.

3 Test Experiments

1- First kind Lane-Emden-Equations

d2y
dx2 +

2
x

dy
dx

+ ym = 0, (18)

subject to:

y′(0) = 1 and y(0) = 1. (19)

First kind Lane-Emden equations relate to the poly-
tropic models and here m is the polytropic index
which is related to the relation between pressure and
density comprising the star. In galactic dynamics all
the polytropes with n > 5 have infinite radii while
n < 5 have a surface. The two cases most inter-
esting for real stars are n = 1.5 and n = 3 which
correspond to many astrophysical applications, no
exact solution is present for these values but nu-
merically they can be solved. We applied LSANN
method on Eqs. (18)-(19) the results and absolute
true error with one hidden layer and 5 weights for
polytropic index n = 0,1and 5 are shown in Table
1. While numerical solutions for the two interest-
ing cases are compared by the results in [1], shown
in Table 2, that shows the achievements of imple-
mented methodology. Figure 2 shows the compari-
son of ChNN and LSANN.

2-Second kind Lane-Emden equation (Bonnor-
Ebert gas sphere)

d2y
dx2 +

2
x

dy
dx

+ ey = 0, (20)

subject to condition:

y′(0) = 0 and y(0) = 0. (21)

We tested the suggested algorithm on the Bonnor-
Ebert gas sphere equation with 20 equidistant points
from 0 to 1 and 6 weights that attained the goal to
minimize the mean square error upto 6.674×10−12.
The results are compared with ADM [1], squared
remainder minimization method (SRM) [32], DTM
[13], HNN [22] and ANN [33] that can be seen
in Table 3. Graphical comparison of LSANN with
ADM [1], HNN [22] and ANN [33] can be visual-
ized in Figure 3. The values of weights after train-
ing are shown in Table 4.

3-Second kind Lane-Emden equation (Richardson
theory of thermionic currents)

d2y
dx2 +

2
x

dy
dx

+ e−y = 0, (22)

subject to the condition

y′(0) = 0 and y(0) = 0. (23)

The above equation is derived by Richardson in his
study of thermionic distribution in the neighbor-
hood of flat surfaces. Due to the nonlinear term e−y

the above equation was solved by different methods
such as SRM [32], ADM [1] and DTM [13] as the
equation has no exact solution so we compared our
results with ADM [1], HNN [22] and ANN [33] to
demonstrate the strength of proposed method and
results are shown in Figure 4 and Table 5. Table 6
displayed the value of weights after training.

Table 5. Values of weights for Bonnor-Ebert gas
sphere equation

w1 -0.16552514387606254
w2 0.000097451051157554
w3 0.005309207540794966
w4 0.000075101433142333
w5 -0.00015349067560112
w6 0.0000129981950430015

Table 7. Values of weights for Richardson theory
of Thermionic currents model

w1 -00.17103896487645
w2 -0.000411042999503
w3 -0.005622609128186
w4 -0.000287719254200
w5 -0.000015227536836
w6 -0.000031991478252
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Figure 2. Comparision of ChNN and LSANN at m = 5for first kind Lane-Emden equation

Figure 3. Comparison of LSANN with other methods for Bonnor-Ebert gas sphere equation

Figure 4. Comparison of LSANN and ADM for Richardson theory of thermionic current model
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Figure 4. Comparison of LSANN and ADM for Richardson theory of thermionic current model
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Table 2. LSANN results for first kind Lane-Emden equations

x y(x) Absolute True Error
m = 0 m = 1 m = 5 m = 0 m = 1 m = 5

0.1 0.98833 0.98334 0.99834 1.389×10−9 7.381×10−9 2.035×10−6

0.2 0.99333 0.99335 0.99340 2.078×10−9 1.274×10−9 2.406×10−7

0.3 0.98500 0.98507 0.98533 8.671×10−9 4.840×10−9 1.025×10−6

0.4 0.97333 0.97354 0.97436 9.141×10−9 1.069×10−9 6.213×10−7

0.5 0.95833 0.95885 0.96077 1.311×10−8 1.936×10−9 1.867×10−7

0.6 0.94000 0.94107 0.94491 3.011×10−9 9.578×10−8 8.260×10−7

0.7 0.91833 0.92031 0.92715 2.983×10−9 1.652×10−8 3.129×10−6

0.8 0.89333 0.89670 0.90784 2.465×10−8 3.936×10−9 1.523×10−6

0.9 0.86500 0.87036 0.88736 3.518×10−9 3.265×10−9 3.662×10−7

1.0 0.83333 0.84147 0.86602 4.657×10−9 3.091×10−9 1.070×10−7

Table 3. Comparison of LSANN result with results in [1] for first kind Lane-Emden equations

x Present Method y(x) Reference[1]y(x)
m = 1.5 m = 3 m = 1.5 m = 3

0.1 0.998335 0.998336 0.998336 0.998336
0.2 0.993353 0.993373 0.993353 0.993373
0.5 0.959104 0.959839 0.959104 0.959839
0.9 0.872846 0.879617 0.872849 0.879631
1.0 0.845170 0.855058 0.845182 0.855095

Table 4. Comparison of LSANN with other methods for Bonnor-Ebert gas sphere equation

x Present method ADM SRM DTM ANN HNN
0.1 -0.0016634 -0.0166583 -0.0016658 -0.0166583 -0.0004162 -0.0003607
0.2 -0.0066502 -0.0066533 -0.0066534 -0.0066533 -0.0016634 -0.0014426
0.3 -0.0149296 -0.0149329 -0.0149329 -0.0149329 -0.0037411 -0.0032459
0.4 -0.0264517 -0.0264555 -0.2645555 -0.0264555 -0.0066469 -0.0057706
0.5 -0.0411502 -0.0411540 -0.0411539 -0.0411540 -0.0103767 -0.0090167
0.6 -0.0585408 -0.0589441 -0.0589440 -0.0589441 -0.0149250 -0.0129842
0.7 -0.0797227 -0.0797260 -0.0797259 -0.0797260 -0.0202850 -0.0176730
0.8 -0.1033820 -0.1033860 -0.1033860 -0.1033860 -0.0264485 -0.0230833
0.9 -0.1297950 -0.1297980 -0.1297980 -0.1297980 -0.0334065 -0.0292149
1.0 -0.1588240 -0.1588270 -0.1558828 -0.1588270 -0.0411486 -0.0360680
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Table 6. Comparison of LSANN with other methods for Richardson theory of thermionic current model

x Present method ANN HNN ADM
0.05 -0.0004167158 -0.0004168678 -0.0005112515 -0.0004167188
0.10 -0.0016674970 -0.0016681944 -0.0020449814 -0.0016675005
0.15 -0.0037542257 -0.0037554983 -0.0046011582 -0.0037542247
0.20 -0.0066800404 -0.0066817197 -0.0081797579 -0.0066800339
0.25 -0.0104493569 -0.0104512070 -0.0127807628 -0.0104493484
0.30 -0.0150678925 -0.0150697040 -0.0184041611 -0.0150678882
0.35 -0.0205426944 -0.0205443377 -0.0250499454 -0.0205426999
0.40 -0.0268821742 -0.0268836154 -0.0327181128 -0.0268821920
0.45 -0.0340961475 -0.0340974347 -0.0414086634 -0.0340961759
0.50 -0.0421958821 -0.0421971122 -0.0511216002 -0.0421959153
0.55 -0.0511941535 -0.0511954312 -0.0618569276 -0.0511941831
0.60 -0.0611053099 -0.0611067108 -0.0736146515 -0.0611053269
0.65 -0.0719453473 -0.0719468942 -0.0863947781 -0.0719453438
0.70 -0.0837319953 -0.0837336544 -0.1001973132 -0.0837319659
0.75 -0.0964848154 -0.0964865135 -0.1150222621 -0.0964847552
0.80 -0.1102253112 -0.1102269705 -0.1308696283 -0.1102252120
0.85 -0.1249770528 -0.1249786326 -0.1477394132 -0.1249768957
0.90 -0.1407658164 -0.1407673430 -0.1656316155 -0.1407655594
0.95 -0.1576197378 -0.1576212991 -0.1845462307 -0.1576193009
1.00 -0.1755694833 -0.1755711532 -0.2044832504 -0.1755687313

4 Conclusion

The LSANN method was developed and imple-
mented on first and second kind Lane-Emden equa-
tions to verify the strength of proposed algorithm.
To train the network thermal minimization method-
ology known as simulated annealing was used that
made it possible to reduce the MSE that increased
the accuracy of results. The most marvelous ad-
vantage of the method is the accuracy prediction
of result that can be achieved by observing the
MSE. In addition to other benefits, implementation
of LSANN is very tranquil and the results can be
obtained on entire finite domain. The benefit of
LSANN over the previously used neural methods
is the usage of less number of network parame-
ters with better accuracy and global minimization of
MSE. Comparison of numerical results with other
artificial neural network methods showed the supe-
riority in training of network while the comparison
with other methods demonstrates the simplicity of
the method with better accuracy. All the calcula-
tions were performed on Mathematica 10.
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4 Conclusion

The LSANN method was developed and imple-
mented on first and second kind Lane-Emden equa-
tions to verify the strength of proposed algorithm.
To train the network thermal minimization method-
ology known as simulated annealing was used that
made it possible to reduce the MSE that increased
the accuracy of results. The most marvelous ad-
vantage of the method is the accuracy prediction
of result that can be achieved by observing the
MSE. In addition to other benefits, implementation
of LSANN is very tranquil and the results can be
obtained on entire finite domain. The benefit of
LSANN over the previously used neural methods
is the usage of less number of network parame-
ters with better accuracy and global minimization of
MSE. Comparison of numerical results with other
artificial neural network methods showed the supe-
riority in training of network while the comparison
with other methods demonstrates the simplicity of
the method with better accuracy. All the calcula-
tions were performed on Mathematica 10.
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