PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metrological Aspects Of Evaluation of Glass Types Used in Photovoltaic Modules in Laboratory Scale

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The front glass cover is the crucial part of commercially available silicon solar modules as it provides mechanical protection and environmental isolation. However, from a utility point of view the most important thing is how the glass cover influences the power generation of a photovoltaic (PV) module. Optical matching of the whole structure determines the number of photons absorbed by the solar cells and hence the produced photocurrent. In this study five types of PV glass were optically measured and characterized to find out useful information on transmittance and its character. Then, the results were compared with the electrical parameters of solar mini-modules employing each type of glass. Additionally, the work aimed to providing a low-cost measuring procedure to determine the influence of front glass on photovoltaic performance in small, laboratory scale preserving the Standard Test Conditions. An important aspect was an analysis of different types of glass texture. To confirm properness and adequacy of the analysis, the uncer- tainty aspect was discussed as well.
Rocznik
Strony
203--211
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta, 30-059, Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta, 30-059, Cracow, Poland
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta, 30-059, Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta, 30-059, Cracow, Poland
Bibliografia
  • [1] Snapshot of Global Photovoltaic Markets. (2016). IEA International Energy Agency PVPS. www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2016_1_.pdf.
  • [2] Photonovltaic Raport. (2017). Fraunhofer ISE: www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
  • [3] Czanderna, A.W., Pern, F.J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells, 43(2) 101-181.
  • [4] El Amrani, A., Mahrane, A., Moussa, F.Y., Boukennous, Y. (2007). Solar Module Fabrication. International Journal of Photoenergy, ID 27610.
  • [5] Lange, R.F.M., Luo, Y., Polo, R., Zahnd, J. (2011). The lamination of (multi)crystalline and thin film based photovoltaic modules. Progress in Photovoltaics Research and Applications, 19(2), 127-133.
  • [6] Drabczyk K., Panek P. (2012). A comparative study of EVA with and without thermal history for different lamination process parameters. Materials Science and Engineering B-Advanced Functional Solid State Materials, 177(15), 1378-1383.
  • [7] Mansur, A.A.P., Nascimento, O.L., Vasconcelos, W.L., Mansur, H.S. (2008). Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications. Materials Research, 11(3), 293-302.
  • [8] Chen, L., Wang, Q., Chen, W., Huang, K., Shen, X., (2016). Investigation of a novel frosted glass with regular pit array texture. Journal of Materials Processing Technology, 238, 195-201.
  • [9] Son, J., Kundu, S., Verma, L.K., Sakhuja, M., Danner, A.J., Bhatia, C.S., Yang, H. (2012). A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications. Solar Energy Materials & Solar Cells, 98, 46-51.
  • [10] Said, S.A.M., Al-Aqeeli, N., Walwil, H.M. (2015). The potential of using textured and anti-reflective coated glasses in minimizing dust fouling. Solar Energy, 113, 295-302.
  • [11] Ballif, C., Dicker, J., Borchert, D., Hofmann (2004). Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modeling of yearly energy yield gain. Solar Energy Materials & Solar Cells, 82, 331-344.
  • [12] Wohlgemuth, J., Cunningham, D., Shaner, J., Nguyen, A., Ransome, S., Artigao, A. (2005). Crystalline Silicon Photovoltaic modules with anti-reflective coated glass. Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE, 1015-1018.
  • [13] Yang, H., Wang, H., Cao, D., Sun, D., Ju, X. (2015). Analysis of Power Loss for Crystalline Silicon Solar Module during the Course of Encapsulation. International Journal of Photoenergy, ID 251615, http://dx.doi.org/10.1155/2015/251615.
  • [14] Reference Solar Spectral Irradiance. Air Mass 1.5, American Society for Testing and Materials (ASTM). Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/ spectra/am1.5/
  • [15] Ponce-Alcántara, S., Connolly, J.P., Sánchez, G., Míguez, J.M., Hoffmann, V., Ordás, R. (2014). A statistical analysis of the temperature coefficients of industrial silicon solar cells. Energy Procedia, 55, 578-588.
Uwagi
EN
The authors gratefully acknowledge the financial support from The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management within the scope of the project: “Innovative flexible photovoltaic cover”, No. GEKON2/O4/268473/23/2016.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cd4461d-0cc8-4ecc-838c-2c176001f1de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.