PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term statistics of atmospheric conditions over the Baltic Sea and meteorological features related to wind wave extremes in the Gulf of Gdańsk

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study is to describe wind wave climate and wave extremes of the Gulf of Gdańsk in the southern Baltic Sea and associated meteorological conditions over the Baltic Sea. We obtain the characteristic features of 34 severe historical storms in the Gulf of Gdańsk during the period 1958–2001 and link them with extreme significant wave heights hindcast for five grid points in this gulf. The long-term statistics of atmospheric pressure systems over central and northern Europe, and the north-eastern Atlantic Ocean are derived from a 44-year REMO reanalysis database. A link between the mean, minimum and variability range of atmospheric pressure has been quantified. In general, the higher the mean pressure the smaller its variability and vice versa. Long-term characteristic features of winds over the Baltic Sea have been estimated from the REMO database. Strong winds directions vary from W, WSW to SW in the southern Baltic to more southerly SSW directions in the northern part of the Baltic Sea. The Empirical Orthogonal Functions (EOF) analysis shows that more than 50% of the variability in the atmospheric pressure in the Baltic Sea can be explained by the first EOF mode. The first four EOF modes can reproduce above 90% variability of the hindcast pressure time series. Statistical properties of the hindcast significant wave height over the Gulf of Gdańsk are computed based on the 44-year HIPOCAS database. All the computed statistics of wave heights reveal a very strong sheltering effect caused by the Hel Peninsula.
Czasopismo
Rocznik
Strony
180--195
Opis fizyczny
Bibliogr. 50 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Department of Physical Oceanography and Climate Research, University of Gdańsk, Gdynia, Poland
Bibliografia
  • 1. Badur, J., Cie´slikiewicz, W., 2018. Spatial variability of long-term trends in significant wave height over the Gulf of Gda´nsk using System Identification techniques. Oceanol. Hydrobiol. Stud. 47, 190-201. https://doi.org/10.1515/ohs-2018-0018
  • 2. Bernhoff, H., Sjöstedt, E., Leijon, M., 2006. Wave energy resources in sheltered sea areas: A case study of the Baltic Sea. Renew. Energy 31, 2164-2170. https://doi.org/10.1016/j.renene.2005.10.016
  • 3. Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073
  • 4. Björkqvist, J.-V., Tuomi, L., Tollman, N., Kangas, A., Pettersson, H., Marjamaa, R., Jokinen, H., Fortelius, C., 2017. Brief communication: Characteristic properties of extreme wave events observed in the northern Baltic Proper, Baltic Sea. Nat. Hazards Earth Syst. Sci. 17, 1653-1658. https://doi.org/10.5194/nhess-17-1653-2017
  • 5. Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G.Ph., Hulst, S., Pettersson, H., Behrens, A., Männik, A., 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 152, 57-71.
  • 6. Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L., Pettersson, H., 2020. Wave height return periods from combined measurement—model data: a Baltic Sea case study. Nat. Hazards Earth Syst. Sci. 20, 3593-3609. https://doi.org/10.5194/nhess-20-3593-2020
  • 7. Chakrabarti, S.K., 1994. Hydrodynamics of offshore structures. WIT Press, 464 pp.
  • 8. Chen, G., Wang, X., 2014. Impact of domain geometry on the results of empirical orthogonal function analysis. Annals of GIS 20 (3), 205-216.
  • 9. Cieślikiewicz, W., 1990. Determination of the surface elevation probability distribution of wind waves using maximum entropy principle. In: Tørum, A., Gudmestad, O.T. (Eds.), Proc. NATO-ARW Water Wave Kinematics. Presented at the NATO Advanced Research Workshop on Water Wave Kinematics, Molde. Kluwer Academics, 345-348.
  • 10. Cieślikiewicz, W., Dudkowska, A., Gic-Grusza, G., Jędrasik, J., 2017. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gda´nsk. Ocean Dynam. 67, 1461-1480. https://doi.org/10.1007/s10236-017-1098-4
  • 11. Cieślikiewicz, W., Dudkowska, A., Gic-Grusza, G., Jędrasik, J., 2018. Assessment of the potential for dredged material dispersal from dumping sites in the Gulf of Gda´nsk. J. Soils Sediments 18, 3437-3447. https://doi.org/10.1007/s11368-018-2066-4
  • 12. Cieślikiewicz, W., Graff, J., 1996. Sea state parameterisation using empirical orthogonal functions. In: 25th Coastal Eng. Conf, Orlando, Florida. ASCE, 703-716.
  • 13. Cieślikiewicz, W., Graff, J., 1997. Parametric modelling of storm wave fields over the Irish Sea, 1955—1993. In: Third International Symposium on Ocean Wave Measurement and Analysis, WAVES’97, Virginia Beach, 896-910.
  • 14. Cieślikiewicz, W., Gudmestad, O.T., 1994. Mass transport within the free surface zone of water waves. Wave Motion 19, 145-158. https://doi.org/10.1016/0165-2125(94)90063-9
  • 15. Cieślikiewicz, W., Massel, S.R., 1988. Interaction of wind waves with a vertical wall. J. Waterw. Port Coast. Ocean Eng. ASCE 114, 653-672. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:5(653)
  • 16. Cieślikiewicz, W., Paplińska-Swerpel, B., 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coast. Eng. 55, 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
  • 17. Cieślikiewicz, W., Paplińska-Swerpel, B., Soares, C.G., 2005. Multi-decadal wind wave modelling over the Baltic Sea. In: Coastal Engineering 2004, Vol. 4. World Scientific Publishing Company, Lisbon, Portugal, 778-790. https://doi.org/10.1142/9789812701916_0062
  • 18. Cieślikiewicz, W., Podrażka, O., Gudmestad, O.T., 2015. Breaking wave loads on truss support structures for offshore wind turbines. In: Presented at the MARTECH 2014—2nd International Conference on Maritime Technology and Engineering, Lisbon, Portugal, 1205-1211.
  • 19. Dean, R.G., Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists. World Scientific Publ. Co., 368 pp. Feser, F., Weisse, R., von Storch, H., 2001. Multi-decadal atmospheric modelling for Europe yields multi-purpose data. Eos 82. https://doi.org/10.1029/01EO00176
  • 20. Giudici, A., Jankowski, M.Z., Männikus, R., Najafzadeh, F., Suursaar, Ü., Soomere, T., 2023. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets. Estuar. Coast. Shelf Sci. 290, 108401.
  • 21. Gulev, S.K., Zolina, O., Grigoriev, S., 2001. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Clim. Dynam. 17, 795-809. https://doi.org/10.1007/s003820000145
  • 22. Jacob, D., Podzun, R., 1997. Sensitivity studies with the regional climate model REMO. Meteorol. Atmos. Phys. 63, 119-129. https://doi.org/10.1007/BF01025368
  • 23. Jose, J., Podrażka, O., Gudmestad, O.T., Cie´slikiewicz, W., 2017. Characteristics of the wave slamming forces on jacket structures under plunging breaking waves based on experimental data. ASME 2017 36th International Conference on Ocean, Offshore & Arctic Engineering OMAE2017, Trondheim, Norway, V07BT06A036. https://doi.org/10.1115/OMAE2017-61789
  • 24. Jose, J., Podrażka, O., Gudmestad, O.T., Cie´slikiewicz, W., 2018. Detailed study on breaking wave interactions with a jacket structure based on experimental investigations. J. Offshore Mech. Arct. Eng.-Trans. ASME 140 (2), 021301. https://doi.org/10.1115/1.4037829
  • 25. Launiainen, J., Laurila, T., 1984. Marine wind characteristics in the northern Baltic Sea. Finn. Mar. Res. 250, 52-86.
  • 26. Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability in the Baltic Sea area for The period 1958 to 2009. Clim. Res. 46 (2), 185-196.
  • 27. Lehmann, A., Höflich, K., Post, P., Myrberg, K., 2017. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs). J. Marine Syst. 167, 11-18. https://doi.org/10.1016/j.jmarsys.2016.10.014
  • 28. Leppäranta, M., Myrberg, K., 2009. Physical oceanography of the Baltic Sea. Springer Praxis, Chichester, 401 pp.
  • 29. Lorenz, E.N., 1956. Technical Rep., Statistical Forecast Project Rep. 1. Department of Meteorology, MIT, 49 pp.
  • 30. Mailier, P.J., Stephenson, D.B., Ferro, C.A.T., Hodges, K.I., 2006. Serial Clustering of Extratropical Cyclones. Mon. Weather Rev. 134, 2224-2240. https://doi.org/10.1175/MWR3160.1
  • 31. Massel, S.R., 2017. Ocean surface waves: their physics and prediction, 3rd edn. World Scientific Publication Company, 800 pp.
  • 32. Mietus M., von Storch H., 1997. Reconstruction of the wave climate in the proper Baltic basin, April 1947—March 1988. GKSS Report 97/E/28, Geesthacht.
  • 33. Miętus, M., 1999. Rola regionalnej cyrkulacji atmosferycznej kształtowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Bałtyckiego. Materiały Badawcze IMGW, Meteorologia 29.
  • 34. Najafzadeh, F., Kudryavtseva, N., Soomere, T., 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data. Clim. Dynam. 57, 3465-3478.
  • 35. Obukhov, A.M., 1960. The statistically orthogonal expansion of empirical functions. Bull. Acad. Sci. U.S.S.R., Geophys. Ser. 3, 288-291.
  • 36. Prandtle, D., Matthews, J., 1990. The dynamics of nearshore surface currents generated by tides, wind and horizontal density gradients. Cont. Shelf Res. 665-681. https://doi.org/10.1016/0278-4343(90)90044-M
  • 37. Rogers, J.C., 1990. Patterns of low frequency monthly sea level pressure variability (1899—1986) and associated wave cyclone frequencies. J. Climate 3, 1364-1379.
  • 38. Schimanke, S., Dieterich, C., Meier, H.E.M., 2014. An algorithm based on sea-level pressure fluctuations to identify major Baltic inflow events. Tellus A 66, 23452.
  • 39. Sepp, M., 2009. Changes in frequency of Baltic Sea cyclones and their relationships with NAO and climate in Estonia. Boreal Environ. Res. 14, 143-151.
  • 40. Sepp, M., Post, P., Mändla, K., Aunap, R., 2018. On cyclones entering the Baltic Sea region. Boreal Environ. Res. 23, 1-14.
  • 41. Soomere, T., 2003. Anisotropy of wind and wave regimes in the Baltic Proper. J. Sea Res. 49, 305-316. https://doi.org/10.1016/S1385-1101(03)00034-0
  • 42. Soomere, T., 2005. Wind wave statistics in Tallinn Bay. Boreal Environ. Res. 10, 103-118.
  • 43. Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. 8, 37-46. https://doi.org/10.5194/nhess-8-37-2008
  • 44. Soomere, T., Räämet, A., 2011. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7 (1), 141-150.
  • 45. Soomere, T., 2023. Numerical simulations of wave climate in the Baltic Sea: a review. Oceanologia 65 (1), 117-140. https://doi.org/10.1016/j.oceano.2022.01.004
  • 46. Surkova, G.V., Arkhipkin, V.S., Kislov, A.V., 2015. Atmospheric circulation and storm events in the Baltic Sea. Open Geosci. 7 (1), 332-341.
  • 47. Suursaar, Ü., Kullas, T., 2009. Decadal variations in wave heights off Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate. Oceanologia 51 (1), 39-61. https://doi.org/10.5697/oc.51-1.039
  • 48. Tucker, M.J., Pitt, E.G., 2001. Waves in ocean engineering. Elsevier Science, 521 pp.
  • 49. Ulbrich, U., Christoph, M., 1999. A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim. Dynam. 15, 551-559. https://doi.org/10.1007/s003820050299
  • 50. von Storch, H., Langenberg, H., Feser, F., 2000. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128, 3664-3673. https://doi.org/10.1175/1520-0493(2000)128%3C3664:ASNTFD%3E2.0.CO;2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cd1d9eb-0d3f-455b-aee7-930a82a36bdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.