PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of acoustic modal characteristics of two dimensional irregular shaped cavities by impedance mobility compact matrix (IMCM) approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the impedance and mobility compact matrix (IMCM) method for prediction of acoustic modal characteristics of two dimensional irregular cavities with the rigid wall boundary is presented. This method consists of discretizing the whole cavity into a series of subcavities either of regular or irregular shape. Continuity of both pressure and veloc- ity between adjacent subcavities is ensured using a virtual membrane with zero mass and stiffness. Mathematical formulation for acoustic cavities with the irregular shape has been explained in detail. A finite element model has been developed to calculate the acoustic natural frequency and mode shape. The proposed method is validated using a regular and irregular cavity and compared with finite element modelling results and available results in the literature.
Rocznik
Strony
95--107
Opis fizyczny
Bibliogr. 17 poz., tab.
Twórcy
  • Research Center Imarat, Hyderabad, Telangana, India
  • Indian Institute of Technology Hyderabad, Department of Mechanical and Aerospace Engineering, Telangana, India
  • Indian Institute of Technology Hyderabad, Department of Mechanical and Aerospace Engineering, Telangana, India
  • Research Center Imarat, Hyderabad, Telangana, India
Bibliografia
  • 1. Amir N., Starobinski R., 1996, Finding the eigen modes of two dimensional cavities with two axes of symmetry, Acta Acustica united with Acustica, 82, 6, 811-823.
  • 2. Anyunzoghe E., Cheng L., 2002a, Improved integro-modal approach with pressure distribution assessment and the use of overlapped cavities, Applied Acoustics, 63, 1233-1255.
  • 3. Anyunzoghe E., Cheng L., 2002b, On the extension of the integro-modal approach, Journal of Sound Vibration, 255, 2, 399-406.
  • 4. Brebbia A.A., Telles J.C.F., Wrobel L.C., 1984, Boundary Element Techniques, Springer, New York.
  • 5. Dowell E.H., Gorman III G.F., Smith D.A., 1977, Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparison with the experiment, Journal of Sound and Vibration, 52, 519-542.
  • 6. Joppa P.D., Fyfe I.M., 1978, A finite element analysis of the impedance properties of irregular shaped cavities with absorptive boundaries, Journal of Sound and Vibration, 56, 61-69.
  • 7. Kang S.W., Lee J.M., 2000, Eigenmode analysis of arbitrarily shaped two-dimensional cavities by method of point-matching, The Journal of the Acoustical Society of America, 107, 1153-1160.
  • 8. Kim S.M., Brennan M.J., 1999, A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic systems, Journal of Sound Vibration, 223, 1, 97-113.
  • 9. Kim Y.Y., Kim D.K., 1999, Applications of waveguide-type base functions for the eigen problems of two-dimensional cavities, The Journal of the Acoustical Society of America, 106, 1704-1711.
  • 10. Missaoui J., Cheng L., 1997, A combined integro-modal approach for predicting acoustic properties of irregular-shaped cavities, The Journal of the Acoustical Society of America, 101, 6, 3313-3321.
  • 11. Morse P.M., Feshbach H., 1953, Methods of Theoretical Physics, Vol. II, Mc-Graw Hill, New York.
  • 12. Pan J., 1999, A third note on the prediction of sound intensity, The Journal of the Acoustical Society of America, 105, 560-562.
  • 13. Pan J., Bies D.A., 1990, The effect of fluid-structural coupling on sound waves in an enclosure, Theoretical Part, The Journal of the Acoustical Society of America, 87, 2, 691-707.
  • 14. Petyt M., Lea J., Koopmann G. H., 1976, A finite element method for determining the acoustic modes of irregular shaped cavities, Journal of Sound and Vibration, 45, 495-502.
  • 15. Shi D., Zhang Y., Xiuhai L., 2019, Analysis of acoustic characteristics of arbitrary triangular prism and quadrangular prism acoustic cavities, Shock and Vibration, 2, 1-17.
  • 16. Sum K.S., Pan J., 2006, Effects of the inclination of a rigid wall on the free vibration characteristics of acoustic modes in a trapezoidal cavity, The Journal of the Acoustical Society of America, 119, 4, 2201-2210.
  • 17. Venkatesham B., Mayank Tiwari, Munjal M.L., 2008, Free vibration analysis of coupled acoustic-structural systems, IISc Centenary – International Conference on Advances in Mechanical Engineering (IC-ICAME).
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cd19c4c-87b5-4359-afb7-aeda4c62cb4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.