PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating of the Relationships between Average Particle Size and Microstructure-Mechanical Properties of Materials Produced in Different Compositions using Ultrasonic Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulse-echo ultrasonic test, which is one of the non-destructive testing methods, was used to measure ultrasonic quantities such as longitudinal velocity (VL), shear velocity (VT) and attenuation coefficient (α) in FeCrMn composites. The corresponding elastic constants were determined depending on the longitudinal and transverse velocity. The aim was to reveal the correlation between the microstructural and mechanical properties of FeCrMn composites and ultrasonic quantities. The effect of adding Cr particles on VL and VT velocities is obviously attributed to the change in elastic and shear modulus of FeCrMn composites. It was found that both VL and VT velocities, Young’s modulus (E) and shear modulus (G), as well as hardness values, changed approximately linearly with increasing Cr content. In this study, samples with different volumetric compositions were produced using the powder metallurgy method. It has been revealed that both the applied method and the increase in the amount of Cr have a significant effect on the velocities of VL and VT. The increase in VL and VT is due to the increase of Cr particles, the homogeneous distribution of Cr, the formation of samples especially at a certain temperature, and the decrease of porosity. As a result of these, a decrease in attenuation values was observed depending on the mean grain size. Elastic constants were found to vary in the same way as ultrasonic velocities. By increasing the Cr content both the hardness values and the shear modulus were improved and a good correlation was observed with the grain size.
Twórcy
  • Afyon Kocatepe University, Physics Dept., 03200, Afyonkarahisar, Turkey
  • Afyon Kocatepe University, Engineering Faculty, Electrical Engineering Dept., ANS Campus 03200, Afyonkarahisar, Turkey
Bibliografia
  • [1] M. Toozandehjani, K.A. Matori, F. Ostovan, K.R. Jamaludin, A. Amrin, E. Shafiei, The Effect of the Addition of CNTs on the Microstructure, Densification and Mechanical Behavior in Al-CNTs-Al2O3 Hybrid Nanocomposites. JOM 72, 2283-2294 (2020). DOI: https://doi.org/10.1007/s11837-020-04132-5
  • [2] A. Yönetken, Fabrication of Electroless Ni Plated Fe-Al2O3 Ceramic-Metal Matrix Composites. Trans. Indian Inst. Met. 68, 675-681 (2015). DOI: https://doi.org/10.1007/s12666-014-0497-1
  • [3] S. Madhusudhana, J. N. Prakash, L.H. Manjunath, Study on Preparation and Mechanical Characterization of AlluminiumAlbite Composites Using Powder Metallurgy Technique. Mater. Today: Proc. 54 (2), 390-394 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.09.456
  • [4] A.D. Pingale, A. Owhal, A.S. Katarkar, S.U. Belgamwar, J.S. Rathore, Recent Researches on Cu-Ni Alloy Matrix Composites Through Electrodeposition and Powder Metallurgy Methods: A Review. Mater. Today: Proc. 47 (11), 3301-3308 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.07.145
  • [5] G. Manohar, A. Dey, K.M, Pandey, S.R. Maity, Fabrication of Metal Matrix Composites by Powder Metallurgy: A Review. AIP Conf. Proc. 1952, 020041 (2018). DOI: https://doi.org/10.1063/1.5032003
  • [6] A. Sergi, K. Rhu, S. Irukuvarghula, M. Meisnar, A. Makaya, M.M. Attallah, Development of Ni-Base Metal Matrix Composites by Powder Metallurgy Hot Isostatic Pressing for Space Applications. Adv. Powder Technol. 33 (2), 103411 (2022). DOI: https://doi.org/10.1016/j.apt.2021.103411
  • [7] Y. Lin, K. Kang, F. Chen, L. Zhang, E.J. Lavernia, Gradient Metal Matrix Composites. In book: Reference Module in Materials Science and Materials Engineering. Comprehensive Composite Materials II, 4, 331-346 (2018). DOI: https://doi.org/10.1016/B978-0-12-803581-8.09975-6
  • [8] V. Özkan, İ.H. Sarpün, A. Erol, A. Yönetken, Influence of Mean Grain Size with Ultrasonic Velocity on Micro-hardness of B4C-Fe-Ni Composite. J. Alloys Compd. 574, 512-519 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.05.097
  • [9] I. Oral, H. Güzel, G. Ahmetli, C.H. Gür, Determining the Elastic Properties of Modified Polystyrenes by Sound Velocity Measurements. J. Appl. Polym. Sci. 121 (6), 3425-3432 (2011). DOI: https://doi.org/10.1002/app.33860
  • [10] R. Ünal, I.H. Sarpün, H.A. Yalım, A. Erol, T. Özdemir, S. Tuncel, The Mean Grain Size Determination of Boron Carbide (B4C) - Aluminium (Al) and Boron Carbide (B4C) - Nickel (Ni) Composites by Ultrasonic Velocity Technique. Mater. Charact. 56 (3), 241-244 (2006). DOI: https://doi.org/10.1016/j.matchar.2005.11.006
  • [11] I. Oral, H. Guzel, G. Ahmetli, Measuring the Young’s modulus of Polystyrene-Based Composites by Tensile Test and Pulse-Echo Method. Polym. Bull. 67, 1893-1906 (2011). DOI: https://doi.org/10.1007/s00289-011-0530-z
  • [12] J. Ye, J. Li, H. Luo, J. Tan, X. Chen, B. Feng, K. Zheng, F. Pan, Effect of Micron-Ti Particles on Microstructure and Mechanical Properties of Mg-3Al-1Zn Based Composites. Mater. Sci. Eng. A. 833, 142526 (2022). DOI: https://doi.org/10.1016/j.msea.2021.142526
  • [13] L. Lattanzi, A. Etienne, Z. Li, G.T. Chandrashekar, S.R. Gonapati, S.A. Awe, Wollmar Jarfors AW, The Effect of Ni and Zr Additions on Hardness, Elastic Modulus and Wear Performance of Al-SiCp Composite. Tribol. Int. 169, 107478 (2022). DOI: https://doi.org/10.1016/j.triboint.2022.107478
  • [14] R. Guo, B. Liu, R. Xu, Y. Cao, J. Qiu, F. Chen, Z. Yan, Y. Liu, Microstructure and Mechanical Properties of Powder Metallurgy High Temperature Titanium Alloy with High Si Content. Mater. Sci. Eng. A. 777, 138993 (2020). DOI: https://doi.org/10.1016/j.msea.2020.138993
  • [15] A. Małecki, A. Micek-Ilnicka, Electroless Nickel Plating from Acid Bath. Surf. Coat. Technol. 123 (1), 72-77 (2000). DOI: https://doi.org/10.1016/S0257-8972(99)00423-5.
  • [16] S.K. Sharma, K.K. Saxena, K.B. Kumar, N. Kumar, The Effect of Reinforcements on the Mechanical Properties of AZ31 Composites Prepared by Powder Metallurgy: An Overview. Mater. Today: Proc. 56 (4), 2293-2299 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.11.639
  • [17] G.S. Arora, S.U. Rao, K.K. Saxena, Critical Review of Mg Matrix Composite for Bio-Implants Through Powder Metallurgy. Mater. Today: Proc. 57 (2), 902-907 (2022). DOI: https://doi.org/10.1016/j.matpr.2022.03.036
  • [18] D. Chaira, Powder Metallurgy Routes for Composite Materials Production. Encyclopedia of Materials: Composites 2, 588-604 (2021). DOI: https://doi.org/10.1016/B978-0-12-803581-8.11703-5
  • [19] F. Wang, K. Wakoh, Y. Li, S. Ito, K. Yamanaka, Y. Koizumi, A. Chiba, Study of Microstructure Evolution and Properties of Cu-Fe Microcomposites Produced by A Pre-alloyed Powder Method. Mater. Des. 126, 64-72 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.04.017
  • [20] M. Toozandehjani, K.A. Matori, F. Ostovan, F. Mustapha, N.I. Zahari, A. Oskoueian, On the Correlation Between Microstructural Evolution and Ultrasonic Properties: A Review. J. Mater. Sci. 50, 2643-2665 (2015). DOI: https://doi.org/10.1007/s10853-015-8855-x
  • [21] Mylavarapu P, Woldesenbet E, Ultrasonic Characterization of Sandwich Core Materials. J. Sandw. Struct. Mater. 10 (5), 413-428 (2008). DOI: https://doi.org/10.1177/1099636208092
  • [22] M. Toozandehjani, F. Mustapha, N.I. Zahari, M.K Anuar Ariffin, K.A. Matori, F. Ostovan, W.F. Lim, Characterization of Aging Behavior of AA6061 Aluminum Alloy Through Destructive and Ultrasonic Non-destructive Testing Techniques. Trans. Indian Inst. Met. 68, 561-569 (2015). DOI: https://doi.org/10.1007/s12666-014-0486-4
  • [23] J. Wang, B. Liu, G. Kan, G. Li, J. Zheng, X. Meng, Frequency Dependence of Sound Speed and Attenuation in Fine-Grained Sediments from 25 to 250 kHz Based on A Probe Method. Ocean Eng. 160, 45-53 (2018). DOI: https://doi.org/10.1016/j.oceaneng.2018.04.078
  • [24] M. Toozandehjani, F. Ostovan, M. Shamshirsaz, K.A. Matori, E. Shafiei, Velocity and Attenuation of Ultrasonic Wave in AlAl2O3 Nanocomposite and Their Correlation to Microstructural Evolution During Synthesizing Procedure. J. Mater. Res. Technol. 15, 2529-2542 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.09.065
  • [25] A.A. El-Daly, A.E. Hammad, Elastic Properties and Thermal Behavior of Sn-Zn Based Lead-Free Solder Alloys. J. Alloys Compd. 505 (2), 793-800 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.06.142
  • [26] A.A. El-Daly, M. Abdelhameed, M. Hashish, W.M. Daoush, Fabrication of Silicon Carbide Reinforced Aluminum Matrix Nanocomposites and Characterization of Its Mechanical Properties Using Nondestructive Technique. Mater. Sci. Eng. A 559, 384-393 (2013). DOI: https://doi.org/10.1016/j.msea.2012.08.114
  • [27] S. Farahmand, M.H. Soorgee, A.H. Monazzah, Evaluating the Elastic Properties of Al2O3-Al FGMs by Longitudinal and Transverse Ultrasonic Bulk Waves Velocity Features. Ceram. Int. 47 (17), 24906-24915 (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.05.217
  • [28] K. Song, S. Das, A. Reza, N.W. Phillips, R. Xu, H. Yu, K. Mizohata, D.E.J. Armstrong, F. Hofmann, Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain. Acta Mater. 201, 535-546 (2020). DOI: https://doi.org/10.1016/j.actamat.2020.10.015
  • [29] M. Matijasevic, A. Almazouzi, Effect of Cr on the Mechanical Properties and Microstructure of Fe-Cr Model Alloys After N-Irradiation. J. Nucl. Mater. 377 (1), 147-154 (2008). DOI: https://doi.org/10.1016/j.jnucmat.2008.02.061
  • [30] B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.E. Svensson, L.G. Johansson, Oxidation of Binary FeCr Alloys (Fe-2.25Cr, Fe-10Cr, Fe-18Cr and Fe-25Cr) in O2 and in O2 + H2O Environment at 600°C. Oxid. Met. 75, 183-207 (2011). DOI: https://doi.org/10.1007/s11085-010-9229-z
  • [31] O. Lahayne, L. Zelaya-Lainez, T. Buchner, J. Eberhardsteiner, J. Füssl, Influence of Nanoadditives on the Young’s Modulus of Cement. Mater. Today: Proc. 62 (5), 2488-2494 (2022). DOI: https://doi.org/10.1016/j.matpr.2022.02.626
  • [32] I. Oral, H. Güzel, G. Ahmetli, C.H. Gür, Determining the Elastic Properties of Modified Polystyrenes by Sound Velocity Measurements. J. Appl. Polym. Sci. 121, 3425-3432 (2011). DOI: https://doi.org/10.1002/app.33860
  • [33] J. Haines, J.M. Léger, G. Bocquillon, Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res. 31, 1-23 (2001). DOI: https://doi.org/10.1146/annurev.matsci.31.1.1
  • [34] X. Jiang, J. Zhao, X. Jiang, Correlation Between Hardness and Elastic Moduli of the Covalent Crystals. Comput. Mater. Sci. 50 (7), 2287-2290 (2011). DOI: https://doi.org/10.1016/j.commatsci.2011.01.043
  • [35] J.H. Westbrook, H. Conrad, The Science of Hardness Testing and Its Research Applications, American Society for Metals, Metal Park, Ohio (1973).
  • [36] Q. Yanga, W. Lengauera, T. Kochb, M. Scheererc, I. Smidc, Hardness and elastic properties of Ti (CxN1-x), Zr (CxN1-x) and Hf (CxN1-x). J. Alloys Compd. 309 (1-2), L5-L9 (2000). DOI: https://doi.org/10.1016/S0925-8388(00)01057-4
  • [37] M.M. Tagieva, N.V. Perelomova, Problems in crystal physics English, Mir Publishers 1983, Moscow.
  • [38] A. Erol, V. Özkan Bilici, A. Yönetken, Characterization Of The Elastic Modulus Of Ceramic-Metal Composites with Physical and Mechanical Properties By Ultrasonic Technique, Open Chemistry 20 (1), 593-601 (2022). DOI: https://doi.org/10.1515/chem-2022-0180
  • [39] A. Erol, A. Yönetken, Fabrication Of Electroless Ni Plated Fe TiC Metal Matrix Composites. Science And Engineering Of Composite Materials 18 (3), 145-149. (2011). DOI: https://doi.org/10.1515/Secm.2011.024
  • [40] V. Özkan, I.H. Sarpün, A. Erol, A. Yönetken, Mean Grain Size And Pore Effects On Ultrasonic Propoties Of WC Fe Ni And Sic Fe Ni Composites. Acta Physica Polonica A. 123 (4), 688-694 (2013). DOI: https://doi.org/10.12693/Aphyspola.123.688
Uwagi
The data used to support the findings of this study are available from the corresponding author upon request.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cce27dd-bfce-4d7a-b6f4-b893c7669df0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.