PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative assessment of energy efficiency indicators of a multi-fuel internal combustion vehicle and an electric vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena porównawcza wskaźników efektywności energetycznej wielopaliwowego pojazdu spalinowego i pojazdu elektrycznego
Języki publikacji
EN
Abstrakty
EN
In the current discussions on the future of the automotive industry, two extreme opinions clash: electromobility or vehicles with conventional drive but powered by alternative fuels. The article discusses the issue related to modeling the energy efficiency factors of a combustion engine operating on three types of fuels (Diesel 100%, Biofuel 100%, and Hemp Oil 100%) as well as an electric drive powered by energy from a coal power plant. Analytical research was conducted based on the external characteristics of the engine's performance. The external characteristic of the Fiat Panda 1.3 JTD combustion engine was obtained on the Automex dynamometer. The engine operated on three fuels: Diesel 100%, Biofuel 100% (rapeseed), and Biofuel 100% (hemp oil). The Nissan Leaf vehicle manufacturer provided the external characteristics of the electric engine. The calculation results showed that the combustion engine consumes less energy at lower speeds than the electric one. At higher speeds, the consumption rates are at a similar level. The recipients of the research are both the demand side – that is, vehicle users, as well as future manufacturers and government institutions responsible for shaping and developing future mobility in the field of individual transport.
PL
W toczących się obecnie dyskusjach na temat przyszłości motoryzacji ścierają się dwie skrajne opinie: elektromobilność lub pojazdy z konwencjonalnym napędem, ale zasilane paliwami alternatywnymi. W artykule omówiono zagadnienie związane z modelowaniem współczynników efektywności energetycznej silnika spalinowego zasilanego trzema rodzajami paliw (olej napędowy 100%, biopaliwo 100% i olej konopny 100%) oraz napędu elektrycznego zasilanego energią z elektrowni węglowej. Badania analityczne przeprowadzono w oparciu o zewnętrzną charakterystykę pracy silnika. Charakterystykę zewnętrzną silnika spalinowego Fiat Panda 1.3 JTD uzyskano na hamowni Automex. Silnik pracował na trzech paliwach: olej napędowy 100%, biopaliwo 100% (rzepak) oraz biopaliwo 100% (olej konopny). Zewnętrzna charakterystyka silnika elektrycznego została dostarczona przez producenta pojazdu Nissan Leaf. Wyniki obliczeń wykazały, że przy niższych prędkościach silnik spalinowy zużywa mniej energii niż silnik elektryczny. Przy wyższych prędkościach wskaźniki zużycia są na podobnym poziomie. Odbiorcami badań jest zarówno strona popytowa - czyli użytkownicy pojazdów, jak i przyszli producenci oraz instytucje rządowe odpowiedzialne za kształtowanie i rozwój przyszłej mobilności w zakresie transportu indywidualnego.
Rocznik
Tom
Strony
73--85
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland
autor
  • Maritime University of Szczecin, Szczecin, Poland
Bibliografia
  • 1. Brandstätter, G., Kahr, M., Leitner, M. (2017). Determining optimal locations for charging stations of electric car – sharing systems under stochastic demand. Transportation Research Part B 104. 17–35.
  • 2. Challa, R., Kamath, D., Anctil, A. (2022). Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Journal of Environmental Management 308. 114592.
  • 3. Coban, H.H., Lewicki, W., Miśkiewicz, R., Drożdż, W. (2022). The Economic Dimension of Using the Integration of Highway Sound Screens with Solar Panels in the Process of Generating Green Energy. Energies, 16(1), 178.
  • 4. Cui, W., Cui, N., Li, T., Cui, Z., Du, Y., Zhang, C. (2022). An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario. Energy 257. 124690.
  • 5. Deza, A., Huang, K., Metel, M.R. (2022). Charging station optimization for balanced electric car sharing. Discrete Applied Mathematics 308. 187–197.
  • 6. Diskin, D., Kuhr, Y., Ben–Hamo, I.Y., Spatari, S., Tartakovsky, L. (2023). Environmental benefits of combined electro – thermos – chemical technology over battery – electric powertrains. Applied Energy 351. 121833.
  • 7. Dong, H., Zhuang, W., Chen, B., Wang, Y., Lu, Y., Liu, Y., Xu, L., Yin, G. (2022). A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections. Applied Energy 310. 118524.
  • 8. Falbo, P., Pelizzari, C., Rizzini, G. (2022). Optimal incentive for electric vehicle adoption. Energy Economics 114. 106270.
  • 9. Franzo, S., Nasca, A., Chiesa, V. (2022). Factors affecting cost competitiveness of electric vehicles against alternative powertrains: A total cost of ownership-based assessment in the Italian market. Journal of Cleaner Production 363. 132559.
  • 10. Gołębiewski, W., Lisowski, M. (2018). Theoretical analysis of electric vehicle energy consumption according to different driving cycles. IOP Conf. Series: Materials Science and Engineering 421. 022010.
  • 11. Joshi, A., Sharma, R., Baral, B. (2022). Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. Journal of Cleaner Production 375. 134407.
  • 12. Lewicki, W. (2018). Ekonomiczne bariery rozwoju rynku elektromobilności w Polsce. Autobusy–Technika, Eksploatacja, Systemy Transportowe, 226.12: 1099–1102.
  • 13. Liu, Z., Song, J., Kubal, J., Susarla, N., Knehr, K.W., Islam, E., Nelson, P., Ahmed, S. (2021). Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Policy 158. 112564.
  • 14. Mastoi, M.Sh., Zhuang, Sh., Munir, H., Haris, M., Hassan, M., Usman, M., Bukhari, S.S.H., Ro, J–S. (2022). An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Reports 8. 11504–11529.
  • 15. Nuez, I., Ruiz–Garcia, A., Osorio, J.(2022). A comparative evaluation of CO2 emissions between internal combustion and electric vehicles in small isolated electrical power systems – Case study of the Canary Islands. Journal of Cleaner Production 369. 133252.
  • 16. Pozzi, A., Raimondo, D.M. (2022). Stochastic model predictive control for optimal charging of electric vehicles battery packs. Journal of Energy Storage 55. 105532.
  • 17. Sang–Hee, W., Hyungjoon, J., Seung-Bok, L., Seokhwan, L. (2022). Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis. Science of The Total Environment 842. 156961.
  • 18. Schloter, L. (2022) Empirical analysis of the depreciation of electric vehicles compared to gasoline vehicles. Transport Policy 126. 268–279.
  • 19. Shafique, M., Azam, A., Rafiq, M., Luo, X. (2022). Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Research in Transportation Economics 91. 101112.
  • 20. Sinigaglia, T., Martins, M.E.S., Siluk, J.C.M. (2022). Technological forecasting for fuel cell electric vehicle: A comparison with electric vehicles and internal combustion engine vehicles. World Patent Information 71. 102152.
  • 21. Suttakul, P., Wongsapai, W., Fongsamootr, T., Mona, Y., Poolsawat, K. (2022). Total cost of ownership of internal combustion engine and electric vehicles: A real-world comparison for the case of Thailand. Energy Reports 8(10). 545–553.
  • 22. Teng, X., Zhuang, W., Liu, F–P., Chiu, Y–H. (2022). China's energy efficiency improvement on account of the development of wind and solar power: Applying a dynamic non-radial directional distance function. International Journal of Hydrogen Energy 47(84), 35914-35927.
  • 23. Verma, Sh., Dwivedi, G., Verma, P. (2022). Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials today: Proceedings 49(2). 217–222.
  • 24. Yang, L., Yu, B., Yang, B., Chen, H., Malima, G., Yi-Ming, W. (2021). Life cycle environmental assessment of electric and internal combustion engine vehicles in China. Journal of Cleaner Production 285. 124899.
  • 25. Yap, K.H., Chin, H.H., Klemes, J.J. (2022). Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review. Renewable and Sustainable Energy Reviews 160. 112862.
  • 26. Zhang, H., Liu, Sh., Lei, N., Fan, Q., Wang, Z. (2022). Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles. Applied Energy 326. 120033.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ccc6a04-541c-4d1d-a9ea-70ed8f5d3929
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.