PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exact solutions of fractional oscillator eigenfunction problem with fixed memory length

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the eigenproblem for a fractional oscillator under homogeneous Dirichlet and Neumann boundary conditions is considered. Key properties of fractional operators with fixed memory length are established, such as the connection between left and right operators, the product rule for fractional integrals, and the fractional integration by the parts rule for periodic/antiperiodic functions. Explicit solutions in the form of discrete sets of sine/cosine eigenfunctions are derived. The impact of fractional order and memory length on eigenvalues is presented on graphs. Finally, a comparison of eigenvalues of oscillator with a fixed memory length and infinite memory length is shown.
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
  • [1] Carpinteri, A., Cornetti, P., & Sapora, A. (2014). Nonlocal elasticity: an approach based on fractional calculus. Meccanica, 49, 2551-2569.
  • [2] Failla, G., Santini, A., & Zingales, M. (2010). Solution strategies for 1D elastic continuum with long-range interactions: Smooth and fractional decay. Mech. Res. Commun., 37(1), 13-21.
  • [3] Patnaik, S., Sidhardh, S., & Semperlotti, F. (2021). Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci., 189, 105992.
  • [4] Lazopoulos, K.A., Karaoulanis, D., & Lazopoulos, A.K. (2016). On fractional modelling of viscoelastic mechanical systems. Mech. Res. Commun., 78, Part A, 1-5.
  • [5] Long, J., Xiao, R., & Chen,W. (2018). Fractional viscoelastic models with non-singular kernels. Mech. Mater., 127, 55-64.
  • [6] Oskouie, M.F., Ansari, R., & Sadeghi, F. (2017). Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based on the surface stress theory. Acta Mechanica Solida Sinica, 30(4), 416-424.
  • [7] Sun, Y., & Xiao, Y. (2017). Fractional order plasticity model for granular soils subjected to monotonic triaxial compression. Int. J. Solids Struct., 118, 224-234.
  • [8] Fabrizio, M., Lazzari, B., & Nibbi, R. (2017). Existence and stability for a visco-plastic material with a fractional constitutive equation. Math. Methods Appl. Sci., 40, 6306-6315.
  • [9] Oskouie, M.F., Ansari, R., & Rouhi, H. (2018). Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectra collocation method. Meccanica, 53, 1115-1130.
  • [10] Tarasov, V.E. (2015). Lattice fractional calculus. Appl. Math. Comput., 257, 12-33.
  • [11] Lei, D., Sun, H., Zhang, Y., Blaszczyk, T., & Yu, Z. (2023). Upscaling solute transport in rough single-fractured media with matrix diffusion using a time fractional advection-dispersion equation. J. Hydrol., 627(Part B), 130280.
  • [12] Kukla, S., & Siedlecka, U. (2018). Fractional heat conduction in a sphere under mathematical and physical Robin conditions. J. Theor. Appl. Mech., 56(2), 339-349.
  • [13] Li, S.-N., & Cao, B.-Y. (2020). Fractional-order heat conduction models from generalized Boltzmann transport equation. Phil. Trans. R. Soc. A, 378, 20190280.
  • [14] Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., &Bates, J.H.T. (2017). The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul.,51, 141-159.
  • [15] Volterra, V. (1931). Theory of Functionals and of Integral and Integro-Differential Equations. London: Blackie & Son.
  • [16] Podlubny, I. (1999). Fractional Differential Equations. New York: Academic Press.
  • [17] Wei, Y., Chen, Y., Cheng, S., & Wang Y. (2017). A note on short memory principle of fractional calculus. Fract. Calc. Appl. Anal., 20, 1382-1404.
  • [18] Wei, Y., Gao, Q., Liu, D.Y., & Wang, Y. (2019). On the series representation of nabla discrete fractional calculus. Commun. Nonlinear Sci. Numer. Simul., 69, 198-218.
  • [19] Ledesma, C.T., Baca, J.V., & Sousa, J.V.d.C. (2022). Properties of fractional operators with fixed memory length. Math. Meth. Appl. Sci., 45, 49-76.
  • [20] Ledesma, C.T., Rodríguez, J.A., & Sousa, J.V.d.C. (2023). Differential equations with fractional derivatives with fixed memory length. Rend. Circ. Mat. Palermo Series 2, 72, 635-653.
  • [21] Blaszczyk, T., Bekus, K., Szajek, K., & Sumelka, W. (2021). On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length. J. King Saud Univ. Sci., 33(1),101220.
  • [22] Sumelka, W., Łuczak, B., Gajewski, T., & Voyiadjis, G.Z. (2020). Modelling of AAA in the framework of time-fractional damage hyperelasticity. Int. J. Solids Struct., 206, 30-42.
  • [23] Voyiadjis, G.Z., Akbari, E., Łuczak, B., & Sumelka, W. (2023). Towards determining an engineering stress-strain curve and damage of the cylindrical lithium-ion battery using the cylindrical indentation test. Batteries, 9, 233.
  • [24] Sumelka, W., Blaszczyk, T., & Liebold, C. (2015). Fractional Euler-Bernoulli beams: theory, numerical study and experimental validation. Eur. J. Mech. A/Solids, 54, 243-251.
  • [25] Stempin, P., Pawlak, T.P., & Sumelka,W. (2023). Formulation of non-local space-fractional plate model and validation for composite micro-plates. Int. J. Eng. Sci., 192, 103932.
  • [26] Klimek, M., & Agrawal, O.P. (2013). Fractional Sturm-Liouville problem. Comput. Math. Appl.,66, 795-812.
  • [27] Klimek, M., Ciesielski, M., & Blaszczyk, T. (2022). Exact and numerical solution of the fractional Sturm-Liouville problem with Neumann boundary conditions. Entropy, 24, 143.
  • [28] Rivero, M., Trujillo, J.J., & Velasco M.P. (2013). A fractional approach to the Sturm-Liouville problem. Cent. Eur. J. Phys., 11(10), 1246-1254.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ccb1db1-b2d7-45eb-8c1f-5b92175a2bf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.