PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In practice for all metallic materials, damage by fatigue usually takes in two steps, the appearance of an initial crack which then grows as a function of the present microstructure. The objective of this study is to identify the elements influencing the fatigue crack growth rate on aluminum alloys of different microstructures. Characterization tests and microstructural analysis on 2024-T3, 5083-H22, 6082-T6 and 7075-T6 shades have been carried out. Based on the experimental results obtained, AA7075-T6 has the best fatigue crack rate resistance which is explained by its behavior as well as the nature and dispersive distribution of the secondary element.
Rocznik
Strony
1453--1462
Opis fizyczny
Bibliogr. 16 poz., il. kolor., fot., 1 rys., wykr.
Twórcy
autor
  • Laboratoire de Matériau et des Systèmes Réactifs, Djilali Liabes University of Sidi Bel Abbes, Algeria
  • Laboratoire de Matériau et des Systèmes Réactifs, Djilali Liabes University of Sidi Bel Abbes, Algeria
autor
  • Laboratoire de Matériau et des Systèmes Réactifs, Djilali Liabes University of Sidi Bel Abbes, Algeria
autor
  • Institut de recherche en génie civil et mécanique, IUT de Saint-Nazaire GeM, France
Bibliografia
  • [1] Rana, R. S. and al.: Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications, Volume 2, Issue 6, June 2012.
  • [2] Medrano-Prietoa, H. M.: Evolution of Microstructure in Al-Si-Cu System Modified with a Transition Element Addition and its Effect on Hardness, Mat. Res., 19, 1, 2016.
  • [3] Xing Zhang, and al.: Influence of Alloying Element Addition on Cu-Al-Ni High-Temperature Shape Memory Alloy without Second Phase Formation, Acta Metallurgica Sinica, 29, 3, 2016.
  • [4] Samuel, A. M.: Role of Zr and Sc addition in controlling the microstructure and tensile properties of aluminum-copper based alloys, Materials and Design, 88, 1134-1144, 2015.
  • [5] Fanghua Shen and Al.: Effects of secondary particle-induced recrystallization on fatigue crack growth in AA2524/AlCuMg T3 alloy sheets, Journal of Alloys and Compounds, 685, 571-580, 2016.
  • [6] Pawlowski, A., Zieba, P.: Diffusional penetration during diffusion-induced grainboundary migration process in an Al-Zn couple, 1993.
  • [7] Hillert, M.: Met. Trans., 3, 2729, 1972.
  • [8] Anderson, T. L.: Fracture Mechanics: Fundamentals and Applications, 3rd ed. CRC Press, Boca Raton, 2004.
  • [9] Sih, G. C., Wei, R. P., Erdogan, F.: Linear Fracture Mechanics: Historical Developments and Applications of Linear Fracture Mechanics, Lehigh University Envo Publisher, Pennsylvania, 1975.
  • [10] Li, M.: Microstructure dependent fatigue crack growth in Al-Mg-Sc alloy, Materials Science & Engineering, 142-151, 2014.
  • [11] Sun, Y. P., Yan, H. H. Chen, G. Z.: Microstructure and mechanical properties of Al-Zn-Mg-Cu/SiC composite after heat treatment. Met Sci Heat Treat, 51, 394, 2009.
  • [12] Tang, K. K.: Fatigue crack growth in the micro to large scale of 7075-T6 Al sheets at different R ratios. Theoretical and Applied Fracture Mechanics 83 ( 2016) 93-104.
  • [13] Maddox, S. J.: The effect of mean stress on fatigue crack propagation a literature review, international Journal of Fracture, 11, 3, 389-408, 1975.
  • [14] ASTM Standard E8-04: Standard Test Methods for Tension Testing of Metallic Materials, Part 03.01, Metals Mechanical Testing Elevated and Low-Temperature Tests Metallographic.
  • [15] ASTM Standard E647-00: Standard Test Method for Measurement of Fatigue Crack Growth, Part 03.01, Metals Mechanical Testing Elevated and Low-Temperature Tests Metallographic.
  • [16] Paris, P.C. and Erdogan, F.: A critical analysis of crack propagation laws, Transactions of The ASME, Series E: Journal of Basic Engineering, 85, 528-534, 1963.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cca23c0-06a8-41ef-8ff8-0ba35981d2c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.