PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of NiO-doped Fe3O4/chitosan-PVA composites for tetracycline degradation under visible light irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tetracycline contamination adversely affects aquatic ecosystems and increases the likelihood of antibiotic-resistant bacterium development, posing substantial risks to both environmental and human health. Consequently, there is a pressing need for efficient technologies to break down and eliminate tetracycline from water sources. This study aimed to synthesis a Fe3O4 /Chi-PVA@NiO composite for photocatalytic degradation of tetracycline. Crosslinked chitosan (Chi) and polyvinyl alcohol (PVA) were applied to enhance the mechanical strength and increasing the physical and chemical stability of composites. XRD, UV-DRS, SEM-EDS, VSM, and FTIR were employed for characterization. The composite material exhibits magnetic characteristic, evidenced by a saturation magnetization of 67.13 emu/g and a band gap measuring 1.86 eV. The magnetic characteristics enhance the separation efficiency of the composite following the photocatalytic process with an external magnet and low band gap values, which enable degradation to occur under visible light radiation. The maximum degradation efficiency was attained at a pH of 5, a tetracycline concentration of 20 mg/L, a composite dosage of 0.5 g/L, and an irradiation time of 100 min with a degradation efficiency of 98.20%. The rate of degradation kinetics approximates a pseudo-first-order model in which the value of the degradation constant decreases as the concentration of tetracycline increases. The catalyst exhibited outstanding stability and reusability, achieving a high degradation efficiency of 94.10% over five consecutive cycles. The FTIR analysis revealed no notable alterations in the functional groups of the composite both prior and following the photocatalytic degradation process. This research offers an efficient and eco-friendly approach for removing tetracycline contaminants from the environment.
Twórcy
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
  • Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
  • Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, Indonesia
Bibliografia
  • 1. Cycon M., Mrozik A., Piotrowska-Seget Z. 2019. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontier in Microbiology, 10(338), 1–45. https:// doi.org/10.3389/fmicb.2019.00338
  • 2. Ersan M., Dogan H. 2023. Investigation of environmentally friendly adsorbent synthesis from eggshell by carbonization, immobilization, and radiation: Box-Benkhen Design and tetracyclin removal. Groundwater for Sustainable Development, 20, 1–11. https://doi.org/10.1016/j.gsd.2022.100858
  • 3. Fatimah I., Wijayana A., Ramanda G.D., Suratno., Sagadevan S., Oh W., Doong R. 2024. Highly active photocatalyst of nickel oxide nanoparticles green-synthesized using Tinosphora cordifolia-plant extract for photocatalytic oxidation of tetracycline. Environmental Nanotechnology. Monitoring & Management, 22, 1–10. https://doi.org/10.1016/j.enmm.2024.100968
  • 4. Fu Q., Meng Y., Yao Y., Shen H., Xie B., Ni Z., Xia S. 2023. Construction of facet orientation-supported Z-scheme heterojunction of BiVO4 (110)-Fe2O3 and its photocatalytic degradation of tetracycline. Journal of Environmental Chemical Engineering, 11(5), 1–12. https://doi.org/10.1016/j.jece.2023.111060
  • 5. Gogoi D., Das M.R., Ghosh N.N. 2023. 2-D gC3N4 supported CoFe2O4 nanoparticles as an efficient S-scheme catalyst for various antibiotic degradation. Applied Surface Science, 619, 1–11. https://doi.org/10.1016/j.apsusc.2023.156753
  • 6. Golrizkhatami F., Taghavi L., Nasseh N., Panahi H.A. 2023. Synthesis of novel MnFe2O4/BiOI green nanocomposite and its application to photocatalytic degradation of tetracycline hydrochloride: (LC-MS analyses, mechanism, reusability, kinetic, radical agents, mineralization, process capability, and purification of actual pharmaceutical wastewater). Journal of Photochemistry & Photobiology, A: Chemistry, 444, 1–16. https://doi.org/10.1016/j. jphotochem.2023.114989
  • 7. Guan H., Chen Y., Xue Y. 2024. A novel Fe3O4@Pt synthetized via a self-assembly strategy as efficient Fenton-like@mimetic enzyme catalyst for degradation of tetracyclines in food processing wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 695, 1–12. https://doi.org/10.1016/j.colsurfa.2024.134260
  • 8. Guo J., Huang M., Gao P., Zhang Y., Chen H., Zheng S., Mu T., Luo X. 2020. Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane. Chemical Engineering Journal, 398, 1–11. https://doi.org/10.1016/j.cej.2020.125604
  • 9. Habiba U., Lee J.J.L., Joo T.C., Ang B.C., Afifi A.M. 2019. Degradation of Methyl orange and Congo red by using chitosan/polyvinyl alcohol/TiO2 electrospun nanofibrous membrane. International Journal of Biological Macromolecules, 131, 821–827. https://doi.org/10.1016/j.ijbiomac.2019.03.132
  • 10. Han W., Shou J., Zhu S., Tu X., Chen Y., Sun C., Chang Y., Zheng H. 2024. Efficient electron transport between NiO/Fe2O3 by loading amorphous carbon improves photocatalytic degradation property. Journal of Environmental Chemical Engineering, 12(1), 1–12. https://doi.org/10.1016/j.jece.2023.111667
  • 11. Hariani P.L., Salni S., Said M., Farahdiba R. 2022. Core-shell Fe3O4/SiO2/TiO2 magnetic modified Ag for the photocatalytic degradation of Congo red dye and antibacterial activity. Bulletin of Chemical Reaction Engineering & Catalysis, 18(2), 315–330. https://doi.org/10.9767/bcrec.19275
  • 12. Hariani P.L., Said M., Salni, Rachmat A., Aprinati N., Sthephanie, E.A. 2023. Synthesis of Fe3O4/ SiO2/NiO magnetic composite: Evaluation of its catalytic activity for methylene blue degradation. Global NEST Journal, 25(2), 36–43. https://doi.org/10.30955/gnj.004407
  • 13. Harikumar B., Subhiksha V., Okla M.K., Abdel-maksoud M.A., El-Tayed M.A., Alatar A.A., Al- Amri S.S., Elbadawi Y.B., Sivaranjani P.R., Khan S.S. 2024. Magnetic Fe3O4 nanospheres supported N/S-SnO2 nanorod for highly effective visible light photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 986, 1–9. https://doi.org/10.1016/j.jallcom.2024.174017
  • 14. Huang K., Xu W., Zheng S., Tian J. 2023. Coupling photothermal and piezoelectric effect in Bi4Ti3O12 for enhanced photodegradation of tetracycline hydrochloride. Optical Materials, 145, 1–12. https:// doi.org/10.1016/j.optmat.2023.114352
  • 15. Islam M.A., Nazal M.K., Akinpelu A.A., Sajid M., Alhussain N.A, Billah R.E.K., Bahsis L. 2024. Novel activated carbon derived from a sustainable and low-cost palm leaves biomass waste for tetracycline removal: Adsorbent preparation, adsorption mechanisms and real application. Diamond and Related Materials, 147, 1–12. https://doi.org/10.1016/j. diamond.2024.111375
  • 16. Jayaprakash R.N., Dineshbabu N., Selvaraj S., Vignesh S., Arun T., Ravichandran K. 2024. Hydrothermally constructed and visible-light activated efficient NiO/ZnO/g-C3N4 ternary nanocomposites for Methylene blue dye degradation and antibacterial applications. Inorganic Chemistry Communications, 159, 1–12. https://doi.org/10.1016/j. inoche.2023.111643
  • 17. Jiang H., Wang Q., Chen P., Zheng H., Shi J., Shu H., Liu Y. 2022. Photocatalytic degradation of tetracycline by using a regenerable (Bi)BiOBr/rGO composite. Journal of Cleaner Production, 339, 1–10.
  • 18. Harikumar B., Subhiksha V., Okla M.K., Abdel-maksoud M.A., El-Tayed M.A., Alatar A.A., Al- Amri S.S., Elbadawi Y.B., Sivaranjani P.R., Khan S.S. 2024. Magnetic Fe3O4 nanospheres supported N/S-SnO2 nanorod for highly effective visible light photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 986, 1–9. https://doi.org/10.1016/j.jallcom.2024.174017
  • 19. Huang K., Xu W., Zheng S., Tian J. 2023. Coupling photothermal and piezoelectric effect in Bi4Ti3O12 for enhanced photodegradation of tetracycline hydrochloride. Optical Materials, 145, 1–12. https:// doi.org/10.1016/j.optmat.2023.114352
  • 20. Islam M.A., Nazal M.K., Akinpelu A.A., Sajid M., Alhussain N.A, Billah R.E.K., Bahsis L. 2024. Nov¬el activated carbon derived from a sustainable and low-cost palm leaves biomass waste for tetracycline removal: Adsorbent preparation, adsorption mechanisms and real application. Diamond and Related Materials, 147, 1–12. https://doi.org/10.1016/j. diamond.2024.111375
  • 21. Jayaprakash R.N., Dineshbabu N., Selvaraj S., Vignesh S., Arun T., Ravichandran K. 2024. Hydro¬thermally constructed and visible-light activated efficient NiO/ZnO/g-C3N4 ternary nanocomposites for Methylene blue dye degradation and antibacterial applications. Inorganic Chemistry Commu¬nications, 159, 1–12. https://doi.org/10.1016/j. inoche.2023.111643
  • 22. Jiang H., Wang Q., Chen P., Zheng H., Shi J., Shu H., Liu Y. 2022. Photocatalytic degradation of tetra-cycline by using a regenerable (Bi)BiOBr/rGO composite. Journal of Cleaner Production, 339, 1–10.
  • 23. Kamoun E.A., Kenawy E.S., Chen X. 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 3, 217–233. https://doi.org/10.1016/j.jare.2017.01.005
  • 24. Kouotou P.M., Kasmi A.E., Wu L., Waqas M., Tian Z. 2018. Kouotou Particle size-band gap energy-catalytic properties relationship of SE-CVD-derived Fe3O4 thin films. Journal of the Taiwan Institute of Chemical Engineers, 93, 427–435. https://doi.org/10.1016/j.jtice.2018.08.014
  • 25. Li C., Zhang X., Wen S., Xiang R., Han R., Tang W., Yue T., Li Z. 2020. Interface engineering of zeolite imidazolate framework−8 on two-dimensional Al−metal−organic framework nanoplates enhancing performance for simultaneous capture and sensing tetracyclines. Journal of Hazardous Materials, 395, 1–10. https://doi.org/10.1016/j. jhazmat.2020.122615
  • 26. Li L., Han X., Feng S., Sun Z., Wang C. 2024. Ingenious design of II-scheme heterojunction BiVO4/ COF for synergistic photocatalytic degradation of tetracycline. Journal of Solid State Chemistry, 338, 1–10. https://doi.org/10.1016/j.jssc.2024.124888.
  • 27. Liu D., Lu L., Wang M., Hussain B., Tian S., Luo W., Zhou J., Yang Z. 2019. Tetracycline uptake by pak choi grown on contaminated soils and its toxicity in human liver cell line HL-7702. Environmental Pollution, 253, 312–321. https://doi.org/10.1016/j. envpol.2019.06.086
  • 28. Long Z., Xian G., Zhang G., Zhang T., Li X. 2020. BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical. Chinese Journal of Catalysis, 41(3), 464–473. https://doi.org/10.1016/ S1872-2067(19)63474-1
  • 29. Luk C.J., Yip J., Yuen C.W.M., Kan C., Lam K. 2014. A Comprehensive study on adsorption behaviour of Direct, Reactive and Acid dyes on crosslinked and non-crosslinked chitosan Beads. Journal of Fiber Bioengineering & Informatics, 7, 35–52. https://doi.org/10.3993/jfbi03201404
  • 30. Marzbali M.H., Esmaieli M., Abolghasemi H., Marzbali M.H. 2016. Tetracycline adsorption by H3PO4- activated carbon produced from apricot nut shells: A batch study. Process Safety and Environmental Protection, 102, 700–709. https://doi.org/10.1016/j. psep.2016.05.025
  • 31. Mohammadkhani A., Mohammadkhani F., Farhadyar N., Sadjadi M.S., Kianfar E. 2024. Novel nanocomposite zinc phosphate/polyvinyl alcohol/ carboxymethyl cellulose: Synthesis, characterization and investigation of antibacterial and anticorrosive properties. Case Studies. Chemical and Environmental Engineering, 9, 1–12. https://doi.org/10.1016/j.cscee.2023.100591
  • 32. Qin D., Hu W., Li Z. 2024. Green synthesis of β-cyclodextrin conjugated Fe3O4/NiO nanocomposites and its synergistic effect of adsorption and photocatalytic degradation for Congo red removal. Desalination and Water Treatment, 317, 1–10. https://doi.org/10.1016/j.dwt.2024.100136
  • 33. Qin Y., Chai B., Wang C., Yan J., Fan G., Song G. 2022. Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 640, 1–11. https://doi.org/10.1016/j. colsurfa.2022.128466
  • 34. Said M., Rizki W.T., Asri W.R., Desnelli D., Rachmat A., Hariani PL. 2022. SnO2–Fe3O4 nanocomposites for the photodegradation of the Congo red dye. Heliyon, 8, 1–8. https://doi.org/10.1016/j.heliyon.2022.e09204
  • 35. Saitoh T., Shibata K., Fujimori K., Ohtani Y. 2017. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Separation and Purification Technology, 187, 76–83. https://doi.org/10.1016/j.seppur.2017.06.036
  • 36. Sanchez-Machoda D.I., Lopez-Cervantes J., Vega- Cazarez C.A., Hernandez-Ruiz K.L., Campas-Baypoli O.N., Soto-Cota A., Madera-Santana T.J. 2024. Functional and antibacterial characterization of electrospun nanofiber membranes made of chitosan and polyvinyl alcohol. Results in Chemistry, 7, 1–13. https://doi.org/10.1016/j.rechem.2024.101314
  • 37. Sharma M., Mandal M.K., Pandey S., Kumar R., Dubey K.K. 2022. Visible-light-driven photocatalytic degradation of tetracycline using heterostructured Cu2O−TiO2 nanotubes, kinetics, and toxicity evaluation of degraded products on cell lines. ACS Omega, 7, 33572–33586. https://doi.org/10.1021/acsomega.2c04576
  • 38. Shaban M., Ahmed A.M., Shehata N., Betiha M.A., Rabie MA. 2020. Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of Methylene blue. Journal of Colloid and Interface Science, 555, 31–41. https://doi.org/10.1016/j.jcis.2019.07.070
  • 39. Siddhardhan E.V, Surender S., Arumanayagam T. 2023. Degradation of tetracycline drug in aquatic environment by visible light active CuS/ CdS photocatalyst. Inorganic Chemistry Communications, 147, 1–10. https://doi.org/10.1016/j. inoche.2022.110244
  • 40. Sopanrao K.S., Sreedhar I. 2024. Polyvinyl alcohol modified chitosan composite as a novel and efficient adsorbent for multi-metal removal. Separation and Purification Technology, 340, 1–18. https://doi.org/10.1016/j.seppur.2024.126731
  • 41. Tripta., Rana P.S. 2023. Structural, optical, electrical, and photocatalytic application of NiFe2O4@ NiO nanocomposites for Methylene blue dye. Ceramics International, 49(9), 13520–13530. https://doi.org/10.1016/j.ceramint.2022.12.227
  • 42. Tumbelaka R.M., Istiqomah NI.., Kato T., Oshima D., Suharyadi E. 2022. High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye. Materials Today Communications, 33, 1–15. https://doi.org/10.1016/j.mtcomm.2022.104450
  • 43. Vijeth H., Ashokkumar S.P., Yesappa L., Vandana M., Devendrappa H. 2020. Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application. Electrochimica Acta, 354, 1–14. https://doi.org/10.1016/j.electacta.2020.136651
  • 44. Vishwakarma A.K., Yadav B.S., Singh A.K., Kumar S., Kumar N. 2023. Magnetically recyclable ZnO coated Fe3O4 nanocomposite for MO dye degradation under UV-light irradiation. Solid State Sciences, 145, 1–11. https://doi.org/10.1016/j.solidstatesciences.2023.107312
  • 45. Wang J., Chu L., Wojnarovits L., Takacs E. 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of The Total Environment, 744, 1–12. https://doi.org/10.1016/j.scitotenv.2020.140997
  • 46. Wei X., Naraginti S., Chen P., Li J., Yang X., Li B. 2023. Visible light-driven photocatalytic degradation of tetracycline using p-n heterostructured Cr2O3/ZrO2 nanocomposite. Water, 15(3702), 1–15. https://doi.org/10.3390/w15203702
  • 47. Yan R., Wang Y., Li J., Wang X., Wang Y. 2022. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Journal of Hazardous Materials, 425, 1–12. https://doi.org/10.1016/j.jhazmat.2021.127764
  • 48. Yuan X., Yang J., Yao Y., Shen H., Meng Y., Xie B., Ni Z., Xia S. 2022. Preparation, characterization and photodegradation mechanism of 0D/2D Cu2O/BiOCl S-scheme heterojunction for efficient photodegradation of tetracycline. Separation and Purification Technology, 291, 1–11. https://doi.org/10.1016/j.seppur.2022.120965
  • 49. Zhao R., Sun X., Jin Y., Han J., Wang L., Liu F. 2019. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. Journal of Materials Science, 54, 5445–5456. https://doiQin.org/10.1007/s10853-018-03278-7
  • 50. Zhao C., Ma J., Li Z., Xia H., Liu H., Yang Y. 2020. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants. RSC Advances, 10, 5066–5076. https://doi.org/10.1039/C9RA09208K
  • 51. Zhang Y., Liu F., Zhong L., Dong Z., Chen C., Xu Z. 2023. Reusable and environmentally friendly cellulose nanofiber/titanium dioxide/chitosan aerogel photocatalyst for efficient degradation of tetracycline. Applied Surface Science, 641, 1–13. https://doi.org/10.1016/j.apsusc.2023.158425
  • 52. Zhu L., Zhou Y., Fei L., Cheng X., Zhu X., Deng L., Ma X. 2022. Z-scheme CuO/Fe3O4/GO heterojunction photocatalyst: Enhanced photocatalytic performance for elimination of tetracycline. Chemosphere, 309(2), 1–10. https://doi.org/10.1016/j.chemosphere.2022.136721
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cc8accf-6ae7-448c-8b18-5e03c62a6a1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.