PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water demand forecasting using extreme learning machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przewidywanie zapotrzebowania na wodę z użyciem technik uczenia maszynowego
Języki publikacji
EN
Abstrakty
EN
The capacity of recently-developed extreme learning machine (ELM) modelling approaches in forecasting daily urban water demand from limited data, alone or in concert with wavelet analysis (W) or bootstrap (B) methods (i.e., ELM, ELMW, ELMB), was assessed, and compared to that of equivalent traditional artificial neural network-based models (i.e., ANN, ANNW, ANNB). The urban water demand forecasting models were developed using 3-year water demand and climate datasets for the city of Calgary, Alberta, Canada. While the hybrid ELMB and ANNB models provided satisfactory 1-day lead-time forecasts of similar accuracy, the ANNW and ELMW models provided greater accuracy, with the ELMW model outperforming the ANNW model. Significant improvement in peak urban water demand prediction was only achieved with the ELMW model. The superiority of the ELMW model over both the ANNW or ANNB models demonstrated the significant role of wavelet transformation in improving the overall performance of the urban water demand model.
PL
Oceniono zdolność modelowania z użyciem ekstremalnej maszyny uczącej się (ELM) stosowanej samodzielnie bądź w połączeniu z analizą falkową (W) lub metodami bootstrapowymi (B) (tzn. ELM, ELMW, ELMB) do przewidywania dobowego zapotrzebowania na wodę w mieście. Wyniki porównano z uzyskanymi tradycyjnymi metodami bazującymi na sztucznych sieciach neuronowych (tzn. ANN, ANNW, ANNB). Modele przewidujące zapotrzebowanie na wodę zbudowano z wykorzystaniem trzyletniego zapotrzebowania na wodę i zestawu danych klimatycznych dla miasta Calgary w kanadyjskiej prowincji Alberta. Hybrydowe modele ELMB i ANNB zapewniały satysfakcjonujące prognozy jednodniowe o podobnej dokładności, natomiast wyniki uzyskane z zastosowaniem modeli ELMW i ANNW były bardziej dokładne, przy czym model ELMW okazał się lepszy niż ANNW. Istotną poprawę prognozowania szczytowego zapotrzebowania na wodę w mieście uzyskano jedynie z zastosowaniem modelu ELMW. Wyższość modelu ELMW nad modelami ANNW czy ANNB dowodzi znaczącej roli transformacji falkowej w usprawnianiu działania modeli prognozujących zapotrzebowanie na wodę w mieście.
Wydawca
Rocznik
Tom
Strony
37--52
Opis fizyczny
Bibliogr. 104 poz., rys., tab.
Twórcy
autor
  • Anand Agricultural University, Department of Soil and Water Engineering, College of Agricultural and Technology, Gujarat, India
autor
  • McGill University, Faculty of Agricultural and Environmental Sciences, Department of Bioresource Engineering, Quebec, Canada, H9X 3V9
autor
  • University of Ottawa, Department of Civil Engineering, Canada
Bibliografia
  • ABBOT J., MAROHASY J. 2012. Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Advances in Atmospheric Sciences. Vol. 29. Iss. 4 p. 717–730. DOI: 10.1007/s00376-012-1259-9.
  • ABRAHART R.J. 2003. Neural network rainfall-runoff forecasting based on continuous resampling. Journal of Hydroinformatics. Vol. 5. Iss. 1 p. 51–61.
  • ACHARYA N., SHRIVASTAVA N.A., PANIGRAHI B., MOHANTY U. 2014. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Climate Dynamics. Vol. 43. Iss. 5 p. 1303–1310. DOI: 10.1007/s00382-013-1942-2.
  • ADAMOWSKI J. 2007. Development of a short-term river flood forecasting method based on wavelet analysis. Warsaw, Poland. Polish Academy of Sciences.
  • ADAMOWSKI J.F. 2008a. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology. Vol. 353. Iss. 3 p. 247–266. DOI: 10.1016/j.jhydrol.2008.02.013.
  • ADAMOWSKI J.F. 2008b. Peak daily water demand forecast modeling using artificial neural networks. Journal of Water Resources Planning and Management. Vol. 134. Iss. 2. p. 119–128. DOI: 10.1061/(ASCE)0733-9496(2008)134:2(119).
  • ADAMOWSKI J., ADAMOWSKI K., BOUGADIS J. 2010. Influence of trend on short duration design storms. Water Resources Management. Vol. 24 p. 401–413.
  • ADAMOWSKI J., ADAMOWSKI K., PROKOPH A. 2013. A spectral analysis based methodology to detect climatological influences on daily urban water demand. Mathematical Geosciences. Vol. 45. Iss. 1 p. 49–68. DOI: 10.1007/s11004-012-9427-0.
  • ADAMOWSKI J., CHAN H.F. 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology. Vol. 407. Iss. 1 p. 28–40. DOI: 10.1016/j.jhydrol.2011.06.013.
  • ADAMOWSKI J., CHAN H.F., PRASHER S.O., OZGA-ZIELINSKI B., SLIUSARIEVA A. 2012a. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research. Vol. 48 W01528 p. 1–14. DOI: 10.1029/2010WR 009945.
  • ADAMOWSKI J., CHAN H.F., PRASHER S.O., SHARDA V.N. 2012b. Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan microwatersheds with limited data. Journal of Hydroinformatics. Vol. 14. Iss. 3 p. 731–744. DOI: 10.2166/hydro.2011.044.
  • ADAMOWSKI J., PROKOPH A. 2013. Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. Journal of Hydrology. Vol. 496 p. 225–237.
  • ADAMOWSKI J., PROKOPH A., ADAMOWSKI K. 2012c. Influence of the 11 year solar cycle on annual streamflow maxima in Southern Canada. Journal of Hydrology. Vol. 442 p. 55–62.
  • ADAMOWSKI J., SUN K. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology. Vol. 390. Iss. 1 p. 85–91. DOI: 10.1016/j.jhydrol.2010.06.033.
  • ADAMOWSKI K., PROKOPH A., ADAMOWSKI J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes. Vol. 23 p. 2686–2696.
  • ALVISI S., FRANCHINI M. 2011. Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environmental Modelling and Software. Vol. 26. Iss. 4 p. 523–537. DOI: 10.1016/j.envsoft.2010.10.016.
  • ALVISI S., FRANCHINI M. 2012. Grey neural networks for river stage forecasting with uncertainty. Journal of Physics and Chemistry of the Earth. Vol. 42 p. 108–118. DOI: 10.1016/j.pce.2011.04.002.
  • ANCTIL F., TAPE D. 2004. An exploration of artificial neural network rainfall–runoff forecasting combined with wavelet decomposition. Journal of Environment Engineering and Science. Vol. 3 (Suppl.) p. 121–128. DOI: 10.1139/s03-071.
  • ARAGHI A., ADAMOWSKI J., NALLEY D., MALARD J. 2015 Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Journal of Atmospheric Research. Vol. 11 p. 52–72.
  • BARRETO H., HOWLAND F.M. 2006. Introductory econometrics: Using Monte Carlo simulation with Microsoft Excel. Cambridge, UK. Cambridge University Press.
  • BELAYNEH A., ADAMOWSKI J., KHALIL B., OZGA-ZIELINSKI B. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. Journal of Hydrology. Vol. 508 p. 418–429. DOI: 10.1016/ j.jhydrol.2013.10.052.
  • BISHOP C.M. 1995. Neural Networks for Pattern Recognition. Oxford, UK, Clarendon Press.
  • BUTLER C., ADAMOWSKI J. 2015. Empowering marginalized communities in water resources management: Addressing inequitable practices in Participatory Model Building. Journal of Environmental Management. Vol. 153 p. 153–162.
  • CAMPISI-PINTO S., ADAMOWSKI J., ORON G. 2012. Forecasting urban water demand via wavelet-denoising and neural network models. Case study: city of Syracuse, Italy. Water Resources Management. Vol. 26. Iss. 12 p. 3539–3558. DOI: 10.1007/s11269-012-0089-y.
  • CAMPOLO M., ANDREUSSI P., SOLDATI A. 1999. River flood forecasting with a neural network model. Water Resources Research. Vol. 35. Iss. 4 p. 1191–1197. DOI: 10.1029/1998WR900086.
  • City of Calgary. Environmental and Safety Management 2010 [online]. 2010 State of the environment. The Report 4th ed. pp. 54. [Access 25.10.2015]. Available at: www.calgary.ca/UEP/ESM/Documents/ESMDocuments/ 2010-state-of-the-environment-report.PDF
  • City of Calgary 2011. Civic Census results. Calgary, AB: Election and Information Services.
  • COULIBALY P., EVORA N. 2007. Comparison of neural network methods for infilling missing daily weather records. Journal of Hydrology. Vol. 341. Iss. 1 p. 27–41. DOI: 10.1016/j.jhydrol.2007.04.020.
  • DAUBECHIES I. 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory. Vol. 36. Iss. 5 p. 6–7. DOI: 10.1109/18.57199.
  • DAVIS B., KIEFER J. 2005. Demanding a better way: The benefits of demand forecasting [online]. Public Works (Oct.). [Access 20.10.2015]. Available at: http://www.pwmag.com/water-conservation/demanding-a-betterway_1.aspx
  • DAWSON C.W., ABRAHART R.J., SEE L.M. 2007. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modeling and Software. Vol. 22. Iss. 7 p. 1034–1052. DOI: 10.1016/j.envsoft.2006.06.008.
  • DENNIS JR J.E., SCHNABEL R.B. 1996. Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia: Society for Industrial and Applied Mathematics. DOI: 10.1137/1.9781611971200.
  • DEO R.C., ŞAHIN M. 2015a. Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmospheric Research. Vol. 161 p. 65–81. DOI: 10.1016/j.atmosres.2015.03. 018.
  • DEO R.C., ŞAHIN M. 2015b. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research. Vol. 153 p. 512–525. DOI: 10.1016/j.atmosres.2014.10.016.
  • EFRON B. 1979. Bootstrap methods: another look at the Jackknife. Annals of Statistics. Vol. 7. Iss. 1 p. 1–26. DOI: 10.1214/aos/1176344552.
  • EFRON B., TIBSHIRANI R.J. 1993. An introduction to the Bootstrap. Monographs on Statistics and Applied Probability. Book 57. London, UK. Chapman and Hall. ISBN 978-04-12042-31-7 pp. 456.
  • Environment Canada 2010 [online]. [Access 25.10.2015]. Available at: http://www.climate.weather office.gc.ca
  • FRANCESCO V., BERND F. 2000. Nonstationarity and data preprocessing for neural network predictions of an economic time series. Proceedings of International Joint Conference Neural Network. Vol. 5. p. 129–134. DOI: 10.1109/IJCNN.2000.861446.
  • GHIASSI M., ZIMBRA D.K., SAIDANE H. 2008. Urban water demand forecasting with a dynamic artificial neural network model. Journal of Water Resources Planning and Management. Vol. 134. Iss. 2 p. 138–146. DOI: 10.1109/IJCNN.2000.861446.
  • GOYAL M., BHARTI B., QUILTY J., ADAMOWSKI J., PANDEY A. 2014 Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Systems with Applications. Vol. 41. Iss. 11 p. 5267–5276.
  • HAIDARY A., AMIRI B.J., ADAMOWSKI J., FOHRER N., NAKANE K. 2013. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resources Management. Vol. 27. Iss. 7. p. 2217–2229.
  • HALBE J., ADAMOWSKI J., BENNETT E., PAHL-WOSTL C., FARAHBAKHSH K. 2014. Functional organization analysis for the design of sustainable engineering systems. Ecological Engineering. Vol. 73 p. 80–91.
  • HALBE J., PAHL-WOSTL C., SENDZIMIR J., ADAMOWSKI J. 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Science and Technology: Water Supply. Vol. 67 p. 2651–2660.
  • HAN D., KWONG T., LI S. 2007. Uncertainties in real-time flood forecasting with neural networks. Hydrological Processes. Vol. 21 p. 223–228. DOI: 10.1002/hyp.6184.
  • HANEMANN W.M. 1998. Determinants of urban water use. In: Urban water demand management and planning. Eds. D. Baumann, J. Boland, M. Hanemann. New York. McGraw Hill p. 31–75.
  • HERRERA M., TORGO L., IZQUIERDO J., PÉREZ-GARCÍA R. 2010. Predictive models for forecasting hourly urban water demand. Journal of Hydrology. Vol. 387. Iss. 1–2 p. 141–150. DOI: 10.1016/j.jhydrol.2010.04.005.
  • HOUSE-PETERS L.A., CHANG H. 2011. Urban water demand modeling: Review of concepts, methods, and organizing principles. Journal of Water Resources Research. Vol. 47 W05401. DOI: 10.1029/2010WR009624.
  • HUANG G., HUANG G.-B., SONG S., YOU K. 2015. Trends in extreme learning machines: A review., Neural Networks. Vol. 61 p. 32–48. DOI: 10.1016/j.neunet.2014.10.001.
  • HUANG G.-B., ZHOU H., DING X., ZHANG R. 2012. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics. Part B. Cybernetics. Vol. 42. Iss. 2 p. 513–529. DOI: 10.1109/TSMCB.2011.2168604.
  • HUANG G.-B., ZHU Q.-Y., SIEW C.-K. 2006. Extreme learning machine: Theory and applications. Neurocomputing. Vol. 70. Iss. 1–3 p. 489–501. DOI: 10.1016/j.neucom.2005.12.126.
  • INAM A., ADAMOWSKI J., HALBE J., PRASHER S. 2015. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: A case study in the Rechna Doab watershed, Pakistan. Journal of Environmental Management. Vol. 152 p. 251–267.
  • ISUKAPALLI S., GEORGOPOULOS P. 2001. Computational methods for sensitivity and uncertainty analysis for environmental and biological models. National Exposure Research Laboratory USEPA. EPA/600/R-01/068(NTIS PB2004-102518) Washington, DC: USEPA pp. 145.
  • JAIN A., ORMSBEE L.G. 2002. Short-term water demand forecast modeling techniques-conventional methods versus AI. Journal. (American Water Works Association). Vol. 94. Iss. 7 p. 64–72.
  • JEONG D., KIM Y. 2005. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processe. Vol. 19. Iss. 19 p. 3819–3835. DOI: 10.1002/hyp.5983.
  • JIA Y., CULVER T.B. 2006. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology. Vol. 331. Iss. 3–4 p. 580–590. DOI: 10.1016/j.jhydrol.2006.06.005.
  • KAME’ENUI A. 2003. Water demand forecasting in the Puget Sound Region: Short and long-term models. M.Sc. thesis. Seattle, Washington, U.S.A. Department of Civil and Environmental Engineering, University of Washington pp. 172.
  • KARRAN D., MORIN E., ADAMOWSKI J. 2014. Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes. Journal of Hydroinformatics. Vol. 16. Iss. 3 p. 671–689.
  • KARUNANITHI N., GRENNEY W., WHITLEY D., BOVEE K. 1994. Neural networks for river flow prediction. Journal of Computing in Civil Engineering. Vol. 8. Iss. 2 p. 201–220. DOI: 10.1061/(ASCE)0887-3801(1994)8:2(201).
  • KAYAGA S., SMOUT I. 2008. Water demand management: a key building block for sustainable urban water management [online]. Annual Conference of Allied Social Sciences Association: 2008 Annual Meeting, Transportation and Public Utilities Research Group, New Orleans, USA, 4th-6th January. [Access 20.10.2015]. Available at: https://dspace.lboro.ac.uk/ 2134/8240
  • KESKIN M.E., TERZI Ö. 2006. Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering. Vol. 11. Iss. 1 p. 65–70. DOI: 10.1061/(ASCE)1084-0699(2006)11:1(65).
  • KHAN M.S., COULIBALY P. 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering. Vol. 11. Iss. 3 p. 199–205. DOI: 10.1061/(ASCE)1084-0699(2006)11:3(199).
  • KIM T.-W., VALDÉS J.B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering. Vol. 8. Iss. 6 p. 319–328. DOI: 10.1061/(ASCE)1084-0699(2003)8:6(319).
  • KISI O., CIMEN M. 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting, Journal of Hydrology. Vol. 399. Iss. 1–2 p. 132–140. DOI: 10.1016/j.jhydrol.2010.12.041.
  • KIŞI Ö. 2008. Stream flow forecasting using neuro-wavelet technique. Hydrological Processes. Vol. 22. Iss. 20 p. 4142–4152. DOI: 10.1002/hyp.7014.
  • KIŞI Ö. 2009. Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering. Vol. 14. Iss. 8 p. 773–782. DOI: 10.1061/(ASCE)HE.1943-5584.0000053.
  • KIŞI Ö. 2010. Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology. Vol. 389. Iss. 3–4 p. 344–353. DOI: 10.1016/j.jhydrol.2010.06.013.
  • KOLINJIVADI V., ADAMOWSKI J., KOSOY N. 2014. Recasting payments for ecosystem services (PES) in water resource management: A novel institutional approach. Ecosystem Services. Vol. 10 p. 144–154.
  • KÜÇÜK M., AĞIRALI˙ OĞLU N. 2006. Wavelet regression technique for streamflow prediction. Journal of Applied Statistics. Vol. 33. Iss. 9 p. 943–960. DOI: 10.1080/02664760600744298.
  • MAHESWARAN R., KHOSA R. 2012. Comparative study of different wavelets for hydrologic forecasting. Computers and Geosciences. Vol. 46 p. 284–295. DOI: 10.1016/j.cageo.2011.12.015.
  • MALLAT S.G. 1989. A theory for multi resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11. Iss. 7 p. 674–693. DOI: 10.1109/34.192463.
  • MARQUARDT D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics. Vol. 11. Iss. 2 p. 431–441. DOI: 10.1137/0111030.
  • MCCULLOCH W.S., PITTS W. 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics. Vol. 5. Iss. 4 p. 115–133. DOI: 10.1007/BF02478259.
  • MEKANIK F., IMTEAZ M., GATO-TRINIDAD S., ELMAHDI A. 2013. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology. Vol. 503 p. 11–21. DOI: 10.1016/j.jhydrol.2013.08.035.
  • NALLEY D., ADAMOWSKI J., KHALIL B. 2012. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). Journal of Hydrology. Vol. 475 p. 204–228. DOI: 10.1016/j.jhydrol.2012.09.049.
  • NALLEY D., ADAMOWSKI J., KHAIIL B., OZGA-ZIELINSKI B. 2013. Utilizing wavelet transforms and the Mann-Kendall test to assess trends in surface air temperature over southern Ontario and Québec. ASABE Paper 131620536. St. Joseph, MI: ASABE. DOI: 10.13031/aim.20131620536.
  • NAYAK P.C., VENKATESH B., KRISHNA B., JAIN S.K. 2013. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology. Vol. 493 p. 57–67. DOI: 10.1016/j.jhydrol.2013.04.016.
  • NOURANI V., ALAMI M.T., AMINFAR M.H. 2008. A combined neural wavelet model for prediction of watershed precipitation, Ligvanchai, Iran. Engineering Applications of Artificial Intelligence. Vol. 22. Iss. 3 p. 466–472. DOI: 10.1016/j.engappai.2008.09.003.
  • NOURANI V., BAGHANAM A., ADAMOWSKI J., KISI O. 2014. Applications of hybrid wavelet-artificial intelligence models in hydrology: A review. Journal of Hydrology. Vol. 514 p. 358–377.
  • NOURANI V., KOMASI M., MANO A. 2009. A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resources Management. Vol. 23. Iss. 14 p. 2877–2894. DOI: 10.1007/s11269-009-9414-5.
  • PARTAL T., KIŞI Ö. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, Journal of Hydrology. Vol. 342. Iss. 1–2 p. 199–212. DOI: 10.1016/j.jhydrol.2007.05.026.
  • PINGALE S., KHARE D., JAT M., ADAMOWSKI J. 2014. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. Journal of Atmospheric Research. Vol. 138 p. 73–90.
  • RAJAEE T., MIRBAGHERI S., NOURANI V., ALIKHANI A. 2010. Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model, International Journal of Environmental Science and Technology. Vol. 7. Iss. 1 p. 93–110. DOI: 10.1007/BF03326121.
  • RATHINASAMY M., ADAMOWSKI J., KHOSA R. 2013. Multiscale streamflow forecasting using a new Bayesian Model Average based ensemble multi-wavelet Volterra nonlinear method. Journal of Hydrology. Vol. 507 p. 186–200. DOI: 10.1016/j.jhydrol.2013.09.025.
  • RATHINASAMY M., KHOSA R., ADAMOWSKI J., CH S., PARTHEEPAN G., ANAND J., NARSIMLU B. 2015. Waveletbased multiscale performance analysis: An approach to assess and improve hydrological models. Water Resources Research. Vol. 50. Iss. 12 p. 9721–9737. DOI: 10.1002/2013WR014650.
  • SAADAT H., ADAMOWSKI J., BONNELL R., SHARIFI F., NAMDAR M., ALE-EBRAHIM S. 2011. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. Journal of Photogrammetry and Remote Sensing. Vol. 66 p. 608–619.
  • SEHGAL V., SAHAY R.R., CHATTERJEE C. 2014. Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resources Management. Vol. 28. Iss. 6 p. 1733–1749.
  • SHARMA S.K., TIWARI K.N. 2009. Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in upper Damodar Valley catchment. Journal of Hydrology. Vol. 374. Iss. 3–4 p. 209–222. DOI: 10.1016/j.jhydrol.2009.06.003.
  • SRIVASTAV R.K., SUDHEER K.P., CHAUBEY I. 2007. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resources Research. Vol. 43. Iss. 10 p. 1–12. DOI: 10.1029/2006WR005352.
  • STRAITH D., ADAMOWSKI J., REILLY K. 2014. Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector. Canadian Water Resources Journal. Vol. 39. Iss. 3 p. 255–269.
  • ŞAHIN M. 2012. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances in Space Research. Vol. 50. Iss. 7 p. 973–985. DOI: 10.1016/j.asr.2012.06.021.
  • ŞAHIN M., KAYA Y., UYAR M. 2013. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Advances in Space Research. Vol. 51. Iss. 5 p. 891–904. DOI: 10.1016/j.asr.2012.10.010.
  • ŞAHIN M., KAYA Y., UYAR M., YILDIRIM S. 2014. Application of extreme learning machine for estimating solar radiation from satellite data. International Journal of Energy Research. Vol. 38. Iss. 2 p. 205–212. DOI: 10.1002/er.3030.
  • TIWARI M., ADAMOWSKI J. 2014. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research. Vol. 49. Iss. 10 p. 6486–6507.
  • TIWARI M.K., ADAMOWSKI J. 2015a. An ensemble wavelet bootstrap machine learning approach to water demand forecasting: A case study in the city of Calgary, Canada. Urban Water Journal. In Press. DOI: 10.1080/1573062X.2015.1084011.
  • TIWARI M., ADAMOWSKI J. 2015b. Medium-term urban water demand forecasting with limited data using an ensemble wavelet-bootstrap machine-learning approach. Journal of Water Resources Planning and Management. Vol. 141. Iss. 2.
  • TIWARI M.K., CHATTERJEE C. 2010a. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). Journal of Hydrology. Vol. 382. Iss. 1–4 p. 20–33. DOI: 10.1016/j.jhydrol.2009.12.013.
  • TIWARI M.K., CHATTERJEE C. 2010b. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach. Journal of Hydrology. Vol. 394 p. 458–470. DOI: 10.1016/j.jhydrol.2010.10.001.
  • TIWARI M., CHATTERJEE C. 2011. A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. Journal of Hydroinformatics. Vol. 13. Iss. 3 p. 500–519. DOI: 10.2166/hydro.2010.142
  • TIWARI M.K., SONG K.Y., CHATTERJEE C., GUPTA M.M. 2013. Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps. Journal of Hydroinformatics. Vol. 15. Iss. 2 p. 486–502. DOI: 10.2166/hydro.2012.130.
  • TWOMEY J., SMITH A. 1998. Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews. Vol. 28. Iss. 3 p. 417–430. DOI: 10.1109/5326.704579.
  • VOGL T., MANGIS J., RIGLER A., ZINK W., ALKON D. 1988. Accelerating the convergence of the backpropagation method. Biological Cybernetics. Vol. 59. Iss. 4 p. 257–263. DOI: 10.1007/BF00332914.
  • WANG W., DING J. 2003. Wavelet network model and its application to the prediction of hydrology. Nature and Science. Vol. 1. Iss. 1 p. 67–71.
  • WU C., CHAU K., LI Y. 2009. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology. Vol. 372. Iss. 1–4 p. 80–93. DOI: 10.1016/j.jhydrol.2009.03.038.
  • ZHOU S.L., MCMAHON T.A., WALTON A., LEWIS J. 2002. Forecasting operational demand for an urban water supply zone. Journal of Hydrology. Vol. 259. Iss. 1–4 p. 189–202. DOI: 10.1016/S0022-1694(01)00582-0.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cc79e4b-5b07-4533-8b4d-447ed5fb8e49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.