Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objectives: Spinal cord damage is one of the traumatic situations in persons that may cause the loss of sensation and proper functioning of the muscles either temporarily or permanently. Hence, steps to assure the recovery through the early functioning and precaution could safe-guard a proper interceptive. To ensure the recovery of spinal cord damage through optimized recurrent neural network. Methods: The research on the spinal cord injury classification and level detection is done using the CT images, which is initially given to the segmentation that is done using the adaptive thresholding methodology. Once the segments are formed, the disc is localized using the sparse fuzzy C-means clustering approach. In the next step, the features are extracted from the localized disc and the features include the connectivity features, statistical features, image-level features, grid-level features, Histogram of Oriented Gradients (HOG), and Linear Gradient Pattern (LGP). Then, the injury detection is done based on the Crow search Rider Optimization algorithm-based Deep Convolutional Neural Network (CS-ROA-based DCNN). Once the result regarding the presence of the injury is obtained, the injury-level classification is done based on the proposed Deep Recurrent Neural Network (Deep RNN), and in case of the absence of injury, the process is terminated. Therefore, the injury detection classifier derives the level of the injury, such as normal, wedge, biconcavity, and crush. Results: The experimentation is carried out using an Osteoporotic vertebral fractures database. The performance of the injury level detection based on the proposed model is evaluated based on accuracy, sensitivity, and specificity. The proposed model achieves the maximal accuracy of 0.895, maximal sensitivity of 0.871, and the maximal specificity of 0.933 with respect to K-Fold. Conclusions: The experimental results show that the proposed model is better than the existing models in terms of accuracy, sensitivity, and specificity.
Czasopismo
Rocznik
Tom
Strony
25--40
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Kanyakumari, 629180, India
autor
- Department of Information Technology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Kanyakumari, 629180, India
Bibliografia
- 1. Talbott JF, Huie JR, Ferguson AR, Bresnahan JC, Beattie MS, Dhall SS. MR imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury. Radiol Clin 2019;57:319-39.
- 2. Pranata YD, Wang K-C, Wang J-C, Idram I, Lai J-Y, Liu J-W, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Progr Biomed 2019;171:27-37.
- 3. Han Z, Wei B, Mercado A, Leung S, Li S. Spine-GAN: semantic segmentation of multiple spinal structures. Med Image Anal 2018; 50:23-35.
- 4. Ahammad SKH, Rajesh V, Rahman MDZU. Fast and accurate feature extraction-based segmentation framework for spinal cord injury severity classification. IEEE Access 2019;7:46092-103.
- 5. Tay B, Hyun JK, Oh S. A machine learning approach for specification of spinal cord injuries using fractional anisotropy values obtained from diffusion tensor images. Comput Math Methods Med 2014; 2014:276589.
- 6. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 2011;34:535-46.
- 7. Middendorp JJ, Audige L, Hanson B, Chapman JR, Hosman AJF. What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications. Eur Spine J 2010;19:1238-49.
- 8. Middendorp JJ, Audige L, Bartels RH, Bolger C, Deverall H, Dhoke P, et al. The subaxial cervical spine injury classification system: an external agreement validation study. Spine J 2013;13:1055-63.
- 9. Wellner PD. Adaptive thresholding for the digital desk, Technical Report. Cambridge: EPC Copyright Rank Xerox Ltd., Rank Xerox Research Centre Cambridge Laboratory; 1993. 93-110 pp.
- 10. Chang X, Wang Q, Liu Y, Wang Y. Sparse regularization in fuzzy cmeans for high-dimensional data clustering. IEEE Trans Cybern 2016;47:1-12.
- 11. Manfredini D, Stellini E, Gracco A, Lombardo L, Nardini LG, Siciliani G. Orthodontics is temporomandibular disorder-neutral. Informationen Aus Orthodontie Und Kieferorthopaedie 2017;49: 202-7.
- 12. Cristini R, Merlin NRG, Ramanathan L, Vimala S. Image forgery detection using back propagation neural network nodel and oarticle swarm optimization algorithm. Multimed Res 2020;3: 21-32.
- 13. Bhagyalakshmi V, Ramchandra, Geeta D. Arrhythmia classification using cat swarm optimization based support vector neural network. J Netw Commun Syst 2018;1:28-35.
- 14. Vinolin V, Vinusha S. Enhancement in biodiesel blend with the aid of neural network and SAPSO. J Comput Mech Power Syst Contr 2018;1:11-7.
- 15. Vojt BJ. Deep neural networks and their implementation. Department of Theoretical Computer Science and Mathematical Logic; 2016.
- 16. Binu D, Kariyappa BS. RideNN: a new rider optimization agorithmbased neural network for fault dagnosis in analog circuits. IEEE Trans Instrum Meas 2018:1-25.
- 17. Mukherjee DP, Cheng I, Ray N, Mushahwar V, Lebel M, Basu A. Automatic segmentation of spinal cord MRI using symmetric boundary tracing. IEEE Trans Inf Technol Biomed 2010. https://doi.org/10.1109/TMI.2009.2023362.
- 18. Huang SH, Chu YH, Lai SH, Novak CL. Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans Med Imag 2009:1595-605. https://doi.org/10.1109/TMI.2009.2023362.
- 19. Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 2018;98:8-15.
- 20. Leener BD, Cohen-Adad J, Kadoury S. Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans Med Imaging 2015:1705-18.
- 21. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C. Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 2009:471-82. https://doi.org/10.1016/j.media.2009.02.004.
- 22. Wang KSZQ, Lu L, Wu D, El-Zehiry N, Zheng Y, Shen D. Automatic segmentation of spinal canals in CT images via iterative topology refinement. IEEE Trans Med Imag 2015:1694-704. https://doi. org/10.1109/tmi.2015.2436693.
- 23. Lakshmi ND, Latha YM, Damodaram A. Silhouette extraction of a human body based on fusion of HOG and graph-cut segmentation in dynamic backgrounds. In: Third international conference on computational intelligence & communication technology. Mumbai, India: IET; 2013.
- 24. Mou L, Ghamisi P, Zhu XX. Deep recurrent neural networks for hyperspectral Image classification. IEEE Trans Geosci Rem Sen 2017.
- 25. Jun B, Choi I, Kim D. Local transform features and hybridization for accurate face and human detection. IEEE Trans Pattern Anal Mach Intell 2013:1423-36. https://doi.org/10.1109/tpami.2012. 219.
- 26. Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 2016;169:1-12.
- 27. Osteoporotic vertebral fractures [Online]. Available from: http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets#Dataset_9.3A_Automatic_vertebral_fracture_analysis_and_identification_from_VFA_by_DXA [Accessed Nov 2019].
- 28. Giuffrida JP, Crago PE. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller. IEEE Trans Neural Syst Rehabil Eng 2005;13: 147-52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cc6dbb1-3fd2-4217-bf4b-19640ff9005e