PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of zinc oxide nanoparticles on the mechanical properties of the recycle acrylonitrile butadiene styrene polymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the primary issues with waste management and environmental preservation in recent years has been the recycling of plastic. Polymer materials are used in many aspects of daily life and business. In addition to their extended use, plastic garbage became a problem since it was a persistent and dangerous waste after it was stopped. Reusing polymeric materials maximises waste utilization to create consumable items and creates a path of valorisation, or a second life. The 3D printing sector is one that is rapidly growing. A variety of thermoplastic materials, including recycled ones, can be used to make printable filaments. The article details a new application for material recovered from the recycling of acrylonitrile-butadiene-styrene (ABS): filaments that may be used in 3D printing were made by combining material gathered from 3D printing waste with machine filament waste. Using a universal testometer, samples of recycled ABS (rABS) and virgin ABS (vABS) from printing waste were mixed at seven distinct concentrations. The recycled polymer ABS was mixed with varying concentrations of zinc oxide nanoparticles (ZnO nano), and the impact of these particles on the mechanical characteristics of the polymer was investigated. After mixing the recycle polymer with nano filler ZnO at 3% concentration, fatigue tests were conducted on it and choose the life of recycle polymer.
Słowa kluczowe
Twórcy
  • Department of Mechanical Engineering, Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Najaf, Iraq
  • Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq
Bibliografia
  • 1. Bieliński M., Sykutera D., Czyżewski P., Falkiewicz M., and Siutkowski S. Verification of additive manufacturing producibility of geometric objects with the help of FDM (Fused Deposition Modeling) technology. In: Materials of Conference, 2013.
  • 2. Spoerk M., Savandaiah C., Arbeiter F., Sapkota J., and Holzer C. Optimization of mechanical properties of glass‐spheres‐filled polypropylene composites for extrusion‐based additive manufacturing. Polym. Compos., 2019; 40(2), 638–651, https://doi.org/10.1002/pc.24701.
  • 3. Czyżewski P. et al. Secondary use of ABS co-polymer recyclates for the manufacture of structural elements using the FFF technology, Rapid Prototyp. J., 2018; 24(9), 1447–1454. https://doi.org/10.1108/RPJ-03-2017-0042.
  • 4. Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., and Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng., 2018; 143, 172–196, https://doi.org/10.1016/j.compositesb.2018.02.012.
  • 5. Wickramasinghe S., Do T., and Tran P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments, Polymers (Basel)., 2020; 12(7), 1529, https://doi.org/10.3390/polym12071529.
  • 6. Bryll K., Piesowicz E., Szymański P., Ślączka W., and Pijanowski M. Polymer composite manufacturing by FDM 3D printing technology, in MATEC Web of Conferences, EDP Sciences, 2018; 2006. https://doi.org/10.1051/matecconf/201823702006.
  • 7. Anderson I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid, 3D Print. Addit. Manuf., 2017; 4(2), 110–115. https://doi.org/10.1089/3dp.2016.0054.
  • 8. Abbas M. F., Mohammed A. A., Mohammed A. A., Channapattana S., and Parlak Z., Geothermal Energy Development in Türkiye: A Review, Al-Nahrain J. Eng. Sci., 2024; 27(2), 207–225. https://doi.org/10.29194/NJES.27020207.
  • 9. Zhang L. and Xu Z. Towards minimization of secondary wastes: Element recycling to achieve future complete resource recycling of electronic wastes, Waste Manag., 2019; 96, 175–180, https://doi.org/10.1016/j.wasman.2019.07.026.
  • 10. Mikula K. et al. 3D printing filament as a second life of waste plastics—a review, Environ. Sci. Pollut. Res., 2021; 28, 12321–12333. https://doi.org/10.1007/s11356-020-10657-8.
  • 11. Mwanza B. G. and Mbohwa C. Drivers to sustainable plastic solid waste recycling: a review, Procedia Manuf., 2017; 8, 649–656. https://doi.org/10.1016/j.promfg.2017.02.083.
  • 12. Czyżewski P., Marciniak D., and Sykutera D. Mechanical properties of ABS samples manufactured under different process conditions, Bull. Polish Acad. Sci. Tech. Sci., 2024; 72(1), https://doi.org/10.24425/bpasts.2023.147065.
  • 13. Marciniak D., Czyżewski P., Sykutera D., and Bieliński M. Recycling of ABS operating elements obtained from industry 3D printing machines, Polimery, 2019; 64(11–12), 803–810. https://doi.org/10.14314/polimery.2019.11.9.
  • 14. Vidakis N., Petousis M., Savvakis K., Maniadi A., and Koudoumas E. A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM), Int. J. Plast. Technol., 2019; 23(2), 195–206. https://doi.org/10.1007/s12588-019-09248-1.
  • 15. Collares F. M. et al. Exploring needle-like zinc oxide nanostructures for improving dental resin sealers: Design and evaluation of antibacterial, physical and chemical properties, Polymers (Basel)., 2020; 12(4), 789. https://doi.org/10.3390/polym12040789.
  • 16. Torrado Perez A. R., Roberson D. A., and Wicker R. B. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev., 2014; 14, 343–353. https://doi.org/10.1007/s11668-014-9803-9.
  • 17. Cheng Y., Yu G., Zhang X., and Yu B. The research of crystalline morphology and breakdown characteristics of polymer/micro-nano-composites. Materials (Basel)., 2020; 13(6), 1432, https://doi.org/10.3390/ma13061432.
  • 18. Żur P., Kołodziej A., Baier A., and Kokot G. Optimization of Abs 3D-printing method and parameters, Eur. J. Eng. Sci. Technol., 2020; 3(1), 44–51.
  • 19. Nam Y., Lee S., Jee S. M., Bang J., Kim J. H., and Park J. H. High efficiency upcycling of post-consumer acrylonitrile-butadiene-styrene via plasma-assisted mechanochemistry, Chem. Eng. J., 2024; 480, 147960. https://doi.org/10.1016/j.cej.2023.147960.
  • 20. Zaid H. M. A., Abed A. R. N., and Hasan H. S. Effect of Alumina (Al2O3) Particles on the mechanical properties of magnesium (Mg), Al-Nahrain J. Eng. Sci., 2019; 22(2), 124–130, https://doi.org/10.29194/NJES.22020124.
  • 21. Geng F., Gang L., Wang Y., Li Y., and Yuan Z. Numerical investigation on particle mixing in a ball mill, Powder Technol., 2016; 292, 64–73. https://doi.org/10.1016/j.powtec.2015.11.038.
  • 22. Çevik Ü. and Kam M. A. A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production, J. Nanomater., 2020; 2020(1), 6187149. https://doi.org/10.1155/2020/6187149.
  • 23. Mohammed A. and Abdullah A. Scanning electron microscopy (SEM): A review, in Proceedings of the 2018 international conference on hydraulics and pneumatics—HERVEX, Băile Govora, Romania, 2018; 7–9. https://doi.org/10.1155/2020/6187149.
  • 24. Standard A. D638: Standard test method for tensile properties of plastics, West Conshohocken ASTM Int., 2010. https://doi.org/10.1155/2020/6187149.
  • 25. Radulović J. Characterization of filamentwound polymeric composite materials, Sci. Tech. Rev. 2008; 206, 1820.
  • 26. Hussain H. S. and Takhakh A. M. Mechanical properties of hybrid and polymer matrix composites that used to manufacture partial foot prosthetic, Al-Nahrain J. Eng. Sci., 2017; 20(4), 887–893.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cc6c487-2d40-408e-b7f5-4806f9950dd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.