Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Titanium alloys belong to the group of difficult-to-cut materials, machining of which leads to a number of challenges including large thermal loads on the cutting inserts and difficulties in obtaining a high quality machined surface. Great cutting forces, in turn, result in increased energy consumption. Therefore, it becomes important to attempt to reduce the amount of power consumed during machining, which can be achieved, among other things, by reducing the value of the coefficient of friction in the cutting zone. This paper presents a study on the influence of the size as well as the Cu nanoparticle concentration added to cutting fluid in MQL method on the power grid parameters while turning of Ti6Al4V titanium alloy. In this research, nanoparticles of 22 nm and 65 nm at concentrations of 0.5 wt% and 0.75 wt% were used. Turning process was carried out with constant cutting parameters and variable aerosol formation parameters, i.e. mass flow rate of nanofluid and volumetric flow rate of air. Based on the study, the use of 22 nm nanoparticles at 0.5 wt% concentration is recommended to achieve the smallest monitored values of the power grid parameters. The statistical analysis revealed that, out of the aerosol formation parameters considered, both the air flow rate and nanofluid flow rate do not significantly affect the values of the analysed power network parameters. However, the most significant factor is the variable nanoparticle size.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
315--324
Opis fizyczny
Bibliogr. 46 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
autor
- Faculty of Mechanical Engineering and Management, Poznan University of Technology, Poznań, Poland
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra
Bibliografia
- 1. Sarikaya M, Gupta MK, Tomaz I, Danish M, Mia M, Rubaiee S, et al. Cooling techniques to improve the machinability and sustainability of light-weight alloys: A state-of-the-art review. Journal of Manufacturing Processes 2021;62:179–201. https://doi. org/10.1016/j.jmapro.2020.12.013.
- 2. El abdelaoui FZ, Jabri A, Barkany A El. Optimization techniques for energy efficiency in machining processes—a review. vol. 125. Springer London; 2023. https://doi.org/10.1007/s00170-023-10927-y.
- 3. Fang K, Uhan N, Zhao F, Sutherland JW. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems 2011;30:234–40. https://doi.org/10.1016/j.jmsy.2011.08.004.
- 4. Pervaiz S, Deiab I, Darras B. Power consumption and tool wear assessment when machining titanium alloys. International Journal of Precision Engineering and Manufacturing 2013;14:925–36. https://doi. org/10.1007/s12541-013-0122-y.
- 5. Bhise VY, Jogi BF. Recent developments on sustainable lubricants by using vegetable oil based nano-fluids in machining. Materials Today: Proceedings 2022. https://doi.org/10.1016/j.matpr.2022.03.429.
- 6. Rahim EA, Sasahara H. A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribology International 2011;44:309–17. https://doi.org/10.1016/j.triboint.2010.10.032.
- 7. Khanna N, Agrawal C, Pimenov DY, Singla AK, Machado AR, da Silva LRR, et al. Review on design and development of cryogenic machining setups for heat resistant alloys and composites. Journal of Manufacturing Processes 2021;68:398–422. https:// doi.org/10.1016/j.jmapro.2021.05.053.
- 8. Deiab I, Waqar S, Pervaiz S. Analysis of Lubrication Strategies for Sustainable Machining during Turning of Titanium Ti - 6Al - 4V alloy. Procedia CIRP 2014;17:766–71. https://doi.org/10.1016/j. procir.2014.01.112.
- 9. Raza SW, Pervaiz S, Deiab I. Tool wear patterns when turning of titanium alloy using sustainable lubrication strategies. International Journal of Precision Engineering and Manufacturing 2014;15:1979–85. https://doi.org/10.1007/s12541-014-0554-z.
- 10. Graves A, Norgren S, Crawforth P, Jackson M. A novel method for investigating drilling machinability of titanium alloys using velocity force maps. Advances in Industrial and Manufacturing Engineering 2021;2:100043. https://doi.org/10.1016/j. aime.2021.100043.
- 11. Li G, Chandra S, Rahman Rashid RA, Palanisamy S, Ding S. Machinability of additively manufactured titanium alloys: A comprehensive review. Journal of Manufacturing Processes 2022;75:72–99. https:// doi.org/10.1016/j.jmapro.2022.01.007.
- 12. Mruthunjaya M, Yogesha KB. A review on conventional and thermal assisted machining of titanium based alloy. Materials Today: Proceedings 2021;46:8466–72. https://doi.org/10.1016/j. matpr.2021.03.490.
- 13. Revuru RS, Posinasetti NR, Vsn VR, Amrita M. Application of cutting fluids in machining of titanium alloys—a review. International Journal of Advanced Manufacturing Technology 2017;91:2477–98. https://doi.org/10.1007/s00170-016-9883-7.
- 14. Makhesana MA, Patel KM, Khanna N. Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690. Journal of Manufacturing Processes 2022;77:708–21. https://doi.org/10.1016/j.jmapro.2022.03.060.
- 15. Shokrani A, Dhokia V, Newman ST. Power Consumption Analysis in the Machining of Ti-6Al-4V Ti- tanium Alloy A. In: 3rd Annual EPSRC Manufacturing the Future Conference, Glasgow, Scotland 2014.
- 16. Tiwari S, Amarnath M, Kumar M. Synthesis, characterization, and application of Al 2 O 3 / coconut oil-based nanofluids in sustainable machining of AISI 1040 steel. Journal of Molecular Liquids 2023;386:122465. https://doi.org/10.1016/j. molliq.2023.122465.
- 17. Abbas AT, Gupta MK, Soliman MS, Mia M, Hegab H, Luqman M, et al. Sustainability assessment associated with surface roughness and power con- sumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel. International Journal of Advanced Manufacturing Technology 2019:1311– 27. https://doi.org/10.1007/s00170-019-04325-6.
- 18. Obikawa T, Kamata Y, Shinozuka J. High- speed grooving with applying MQL. International Journal of Machine Tools and Manufacture 2006;46:1854–61. https://doi.org/10.1016/j. ijmachtools.2005.11.007.
- 19. Maruda W, Arkusz K, Szczotkarz N, Wojciechowski S, Nies P, Kr GM. Analysis of size and concentration of nanoparticles contained in cutting fluid during turning of 316L steel in minimum quantity lubrication conditions 2023;87:106–22. https://doi. org/10.1016/j.jmapro.2022.12.065.
- 20. Souza RR, Gonçalves M, Rodrigues RO, Minas G, Miranda JM. Recent advances on the thermal properties and applications of nanofluids : From nanomedicine to renewable energies 2022;201. https:// doi.org/10.1016/j.applthermaleng.2021.117725.
- 21. Yıldırım ÇV. Investigation of hard turning perfor- mance of eco-friendly cooling strategies: Cryogenic cooling and nanofluid based MQL. Tribology International 2020;144. https://doi.org/10.1016/j. triboint.2019.106127.
- 22. Setti D, Sinha MK, Ghosh S, Venkateswara Rao P. Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. International Journal of Machine Tools and Manufacture 2015;88:237–48. https://doi.org/10.1016/j.ijmachtools.2014.10.005.
- 23. Sharma AK, Singh RK, Dixit AR, Tiwari AK. Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes 2017;30:467–82. https://doi.org/10.1016/j.jmapro.2017.10.016.
- 24. Zhang G, Chen H, Xiao G, Yi M, Chen Z, Zhang J, et al. Effect of SiC nanofluid minimum quantity lubrication on the performance of the ceramic tool in cutting hardened steel. Journal of Manufacturing Processes 2022;84:539–54. https://doi.org/10.1016/j. jmapro.2022.10.033.
- 25. Rahmati B, Sarhan AAD, Sayuti M. Investigating the optimum molybdenum disulfide (MoS2) nanolu-brication parameters in CNC milling of AL6061-T6 alloy. International Journal of Advanced Manufac- turing Technology 2014;70:1143–55. https://doi. org/10.1007/s00170-013-5334-x.
- 26. Ben Said L, Kolsi L, Ghachem K, Almeshaal M, Maatki C. Application of nanofluids as cutting fluids in machining operations: a brief review. vol. 13. Springer International Publishing; 2022. https://doi. org/10.1007/s13204-021-02140-8.
- 27. Wang Y, Wan Z, Lu L, Zhang Z, Tang Y. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles. Tribology International 2018;124:10–22. https://doi.org/10.1016/j. triboint.2018.03.035.
- 28. Javid H, Jahanzaib M, Jawad M, Ali MA, Farooq MU, Pruncu CI, et al. Parametric analysis of turning HSLA steel under minimum quantity lubrication (MQL) and nanofluids-based minimum quantity lubrication (NF-MQL): a concept of one-step sustainable machining. International Journal of Advanced Manufacturing Technology 2021;117:1915–34. https://doi.org/10.1007/s00170-021-07776-y.
- 29. Liu G, Li X, Qin B, Xing D, Guo Y, Fan R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters 2004;17:961–6. https:// doi.org/10.1007/s11249-004-8109-6.
- 30. Roushan A, Srinivas U, Patra K, Sahoo P. Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V. Journal of Manufacturing Processes 2022;73:595– 610. https://doi.org/10.1016/j.jmapro.2021.11.030.
- 31. Guo J, Zhao Y, Sun B, Wang P, Wang Z, Dong H. Research progress of nano copper lubricant additives on engineering tribology. Metals 2021;11. https:// doi.org/10.3390/met11122006.
- 32. Shabgard M, Seyedzavvar M, Mohammadpourfard M, Mahboubkhah M. Finite difference simulation and experimental investigation: effects of physical synergetic properties of nanoparticles on temperature distribution and surface integrity of workpiece in nanofluid MQL grinding process. International Journal of Advanced Manufacturing Technology 2018;95:2661–79. https://doi.org/10.1007/ s00170-017-1237-6.
- 33. Kong L, Sun J, Bao Y. Preparation, characterization and tribological mechanism of nanofluids. RSC Advances 2017;7:12599–609. https://doi.org/10.1039/ c6ra28243a.
- 34. Songmei Y, Xuebo H, Guangyuan Z, Amin M. A novel approach of applying copper nanoparticles in minimum quantity lubrication for milling of Ti-6Al- 4V. Advances in Production Engineering And Management 2017;12:139–50. https://doi.org/10.14743/ apem2017.2.246.
- 35. Şirin Ş, Sarıkaya M, Yıldırım ÇV, Kıvak T. Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribology International 2021;153. https://doi.org/10.1016/j. triboint.2020.106673.
- 36. Padmini R, Vamsi Krishna P, Krishna Mohana Rao G. Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International 2016;94:490–501. https:// doi.org/10.1016/j.triboint.2015.10.006.
- 37. Usluer E, Emiroğlu U, Yapan YF, Kshitij G, Khanna N, Sarıkaya M, et al. Investigation on the effect of hybrid nanofluid in MQL condition in orthogonal turning and a sustainability assessment. Sustainable Materials and Technologies 2023;36. https:// doi.org/10.1016/j.susmat.2023.e00618.
- 38. Thakur A, Manna A, Samir S. Multi-Response Optimization of Turning Parameters during Machining of EN-24 Steel with SiC Nanofluids Based Minimum Quantity Lubrication. Silicon 2020;12:71–85. https://doi.org/10.1007/s12633-019-00102-y.
- 39. Padhan S, Dash L, Behera SK, Das SR. Modeling and Optimization of Power Consumption for Economic Analysis, Energy-Saving Carbon Footprint Analysis, and Sustainability Assessment in Finish Hard Turning Under Graphene Nanoparticle–Assisted Minimum Quantity Lubrication. Process Integration and Optimization for Sustainability 2020;4:445–63. https://doi.org/10.1007/s41660-020-00132-9.
- 40. Seid Ahmed Y, González LWH. Ti6Al4V grinding using different lubrication modes for minimizing energy consumption. International Journal of Advanced Manufacturing Technology 2023:2387–405. https://doi.org/10.1007/s00170-023-11203-9.
- 41. Maruda RW, Szczotkarz N, Wojciechowski S, Gawlik J, Królczyk GM. Metrological relations between the spray atomization parameters of a cutting fluid and formation of a surface topography and cutting force. Measurement 2023;219:113255. https://doi. org/10.1016/j.measurement.2023.113255.
- 42. Pervaiz S, Samad WA. Tool wear mechanisms of physical vapor deposition (PVD) TiAlN coated tools under vegetable oil based lubrication. Conference Proceedings of the Society for Experimental Mechanics Series 2018;9:101–7. https://doi. org/10.1007/978-3-319-62834-9_14.
- 43. Venkata Ramana M. Optimization and Influence of Process Parameters on Surface Roughness in Turning of Titanium Alloy under Different Lubricant Conditions. Materials Today: Proceedings 2017;4:8328–35. https://doi.org/10.1016/j. matpr.2017.07.176.
- 44. Haq MA ul, Hussain S, Ali MA, Farooq MU, Mufti NA, Pruncu CI, et al. Evaluating the effects of nano-fluids based MQL milling of IN718 associated to sustainable productions. Journal of Cleaner Production 2021;310. https://doi.org/10.1016/j. jclepro.2021.127463.
- 45. Ali MAM, Azmi AI, Murad MN, Zain MZM, Khalil ANM, Shuaib NA. Roles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys. Tribology International 2020;144:106106. https://doi.org/10.1016/j. triboint.2019.106106.
- 46. Lee PH, Nam JS, Li C, Lee SW. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing 2012;13:331–8. https://doi.org/10.1007/ s12541-012-0042-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cc3e927-2fc3-4171-9980-0652537f8237