PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of daily operations in the marine industry using ant colony optimization (ACO)-An artificial intelligence (AI) approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maritime industry plays a crucial role in the global economy, with roughly 90% of world trade being conducted through the use of merchant ships and more than a million seafarers. Despite recent efforts to improve reliability and ship structure, the heavy dependence on human performance has led to a high number of casualties in the industry. Decision errors are the primary cause of maritime accidents, with factors such as lack of situational awareness and attention deficit contributing to these errors. To address this issue, the study proposes an Ant Colony Optimization (ACO) based algorithm to design and validate a verified set of instructions for performing each daily operational task in a standardised manner. This AI-based approach can optimise the path for complex tasks, provide clear and sequential instructions, improve efficiency, and reduce the likelihood of human error by minimising personal preference and false assumptions. The proposed solution can be transformed into a globally accessible, standardised instructions manual, which can significantly contribute to minimising human error during daily operational tasks on ships.
Twórcy
autor
  • University of Tasmania, Launceston, Australia
  • University of Tasmania, Launceston, Australia
autor
  • University of Tasmania, Launceston, Australia
autor
  • Memorial University of Newfoundland, NL, St. John’s, Canada
Bibliografia
  • [1] Allianz Global Corporate and Speciality. Safety & Shipping Review 2019 | AGCS https://www.agcs.allianz.com/news‐andinsights/news/safety‐shipping‐review‐2019.html (accessed Jan 19, 2023).
  • [2] de Maya, B. N.; Farag, Y.; Bantan, H.; Kurt, R.; Turan, O.;Uflaz, E.; Basappa, R. D.; Sotiralis, P.; Ventikos, N. P. Human Factors’ Contribution into Maritime Accidents by Applying the SHIELD HF Taxonomy. SNAME 14th International Marine Design Conference, IMDC 2022, 2022. https://doi.org/10.5957/IMDC‐2022‐336.
  • [3] Sánchez‐Beaskoetxea, J.; Basterretxea‐Iribar, I.; Sotés, I.; Machado, M. de las M. M. Human Error in Marine Accidents: Is the Crew Normally to Blame? Maritime Transport Research, 2021, 2, 100016. https://doi.org/10.1016/J.MARTRA.2021.100016.
  • [4] Chauvin, C.; Lardjane, S.; Morel, G.; Clostermann, J. P.; Langard, B. Human and Organisational Factors in Maritime Accidents: Analysis of Collisions at Sea Using the HFACS. Accid Anal Prev, 2013, 59, 26–37. https://doi.org/10.1016/J.AAP.2013.05.006.
  • [5] Hulme, A.; Stanton, N. A.; Walker, G. H.; Waterson, P.; Salmon, P. M. Accident Analysis in Practice: A Review of Human Factors Analysis and Classification System (HFACS) Applications in the Peer Reviewed Academic Literature. https://doi.org/10.1177/1071181319631086, 2019, 63 (1), 1849–1853. https://doi.org/10.1177/1071181319631086.
  • [6] Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore Oil Spill Response Practices and Emerging Challenges. Mar Pollut Bull, 2016, 110 (1), 6–27. https://doi.org/10.1016/J.MARPOLBUL.2016.06.020.
  • [7] Luo, M.; Shin, S. Half‐Century Research Developments in Maritime Accidents: Future Directions. Accid Anal Prev, 2019, 123, 448–460. https://doi.org/10.1016/J.AAP.2016.04.010.
  • [8] Schröder‐Hinrichs, J.‐U.; Praetorius, G.; Graziano, A.; Kataria, A.; Baldauf, M. Introducing the Concept of Resilience into Maritime Safety. 2016, 176–182.
  • [9] Pazouki, K.; Forbes, N.; Norman, R. A.; Woodward, M. D. Investigation on the Impact of Human‐Automation Interaction in Maritime Operations. Ocean Engineering, 2018, 153, 297–304. https://doi.org/10.1016/J.OCEANENG.2018.01.103.
  • [10] Dorigo, M.; Gambardella, L. M. Ant Colonies for the Travelling Salesman Problem. Biosystems, 1997, 43 (2), 73–81. https://doi.org/10.1016/S0303‐2647(97)01708‐5.
  • [11] Wang, J.; Dong, L. Ship Energy‐Saving Route Planning Based on Dynamic Fuel Consumption Model. https://doi.org/10.1117/12.2645621, 2022, 12302, 873–877. https://doi.org/10.1117/12.2645621.
  • [12] Xiang, Y.; Yang, X. An ECMS for Multi‐Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm. Energies 2021, Vol. 14, Page 810, 2021, 14 (4), 810. https://doi.org/10.3390/EN14040810.
  • [13] Chen, D. Z.; Wei, C.; Jia, G. L.; Hu, Z. H. Shortest‐Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on AND/OR Network. Complexity, 2020, 2020. https://doi.org/10.1155/2020/2919615.
  • [14] Ma, W.; Lu, T.; Ma, D.; Wang, D.; Qu, F. Ship Route and Speed Multi‐Objective Optimization Considering Weather Conditions and Emission Control Area Regulations. https://doi.org/10.1080/03088839.2020.1825853, 2020, 48 8), 1053–1068. https://doi.org/10.1080/03088839.2020.1825853.
  • [15] Lazarowska, A. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimization. The Journal of Navigation, 2015, 68 (2), 291–307. https://doi.org/10.1017/S0373463314000708.
  • [16] Shen, X. Research on Optimization Model of Marine Industry Strategic Adjustment under Complex Maritime Conditions Based on Ant Colony Algorithm. Polish Maritime Research, 2018, S 2, 164–169. https://doi.org/10.2478/POMR‐2018‐0088.
  • [17] Yang, J.; Zhuang, Y. An Improved Ant Colony Optimization Algorithm for Solving a Complex Combinatorial Optimization Problem. Appl SoftComput, 2010, 10 (2), 653–660.https://doi.org/10.1016/J.ASOC.2009.08.040.
  • [18] Dong, L.; Xiao, Q.; Jia, Y.; Fang, T. Review of Research on Intelligent Diagnosis of Oil Transfer Pump Malfunction. Petroleum, 2022. https://doi.org/10.1016/J.PETLM.2022.01.002.
  • [19] Emad, G.; Roth, W. M. Contradictions in the Practices of Training for and Assessment of Competency: A Case Study from the Maritime Domain. Education and Training, 2008, 50 (3), 260–272. https://doi.org/10.1108/00400910810874026/FULL/PDF. 295.
  • [20] Irving, P.; Holloway, M.; Hook, S.; Ross, A.; Stalvies, C. Preparing for Oil Spill Monitoring. Oil Spill Monitoring Handbook, 2016.
  • [21] Ożoga, B.; Montewka, J. Towards a Decision Support System for Maritime Navigation on Heavily Trafficked Basins. Ocean Engineering, 2018, 159, 88–97. https://doi.org/10.1016/J.OCEANENG.2018.03.073.
  • [22] Mansouri, S. A.; Lee, H.; Aluko, O. Multi‐Objective Decision Support to Enhance Environmental Sustainability in Maritime Shipping: A Review and Future Directions. Transp Res E Logist Transp Rev, 2015, 78, 3–18. https://doi.org/10.1016/J.TRE.2015.01.012.
  • [23] Malyszko, M. Fuzzy Logic in Selection of Maritime Search and Rescue Units. Applied Sciences 2022, Vol. 12, Page 21, 2021, 12 (1), 21. https://doi.org/10.3390/APP12010021.
  • [24] Poornikoo, M.; Øvergård, K. I. Levels of Automation in Maritime Autonomous Surface Ships (MASS): A Fuzzy Logic Approach. Maritime Economics and Logistics, 2022, 24 (2), 278–301. https://doi.org/10.1057/S41278‐022‐ 00215‐Z/FIGURES/9.
  • [25] Chen, C. H.; Khoo, L. P.; Chong, Y. T.; Yin, X. F. Knowledge Discovery Using Genetic Algorithm for Maritime Situational Awareness. Expert Syst Appl, 2014, 41 (6), 2742–2753. https://doi.org/10.1016/J.ESWA.2013.09.042.
  • [26] Li, L.; Gu, Q.; Liu, L. Research on Path Planning Algorithm for Multi‐Uav Maritime Targets Search Based on Genetic Algorithm. Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2020, 2020, 840–843. https://doi.org/10.1109/ICIBA50161.2020.9277470.
  • [27] Huang, K.; Hsieh, C.‐Y.; Chou, Y.‐C. An Ant‐Based Algorithm for the Cross Docking Scheduling Problem for Distribution Centers. International Forum on Shipping, Ports and Airports (IFSPA) 2013: Trade, Supply Chain Activities and Transport: Contemporary Logistics and Maritime Issues, 2013, 522–535.
  • [28] Lisowski, J. Optimization Methods in Maritime Transport and Logistics. Polish Maritime Research, 2018, 25 (4), 30–38. https://doi.org/10.2478/POMR‐2018‐0129.
  • [29] Azadeh, M. A.; Shoja, B. M.; Kazemian, P.; Hojati, Z. T. A Hybrid Ant Colony‐Computer Simulation Approach for Optimum Planning and Control of Maritime Traffic. International Journal of Industrial and Systems Engineering, 2013, 15 (1), 69–89. https://doi.org/10.1504/IJISE.2013.055512.
  • [30] Fu, B.; Song, X.; Guo, Z.; Zhang, P. An Optimization Model for Container Transportation Network with ACO Approach. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 2007, 4768–4775. https://doi.org/10.1109/CEC.2007.4425098.
  • [31] Lazarowska, A. Safe Ship Control Method with the Use of Ant Colony Optimization. Solid State Phenomena, 2014, 210, 234–244. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/SSP.210 234.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cbf227c-3e62-4c4e-b3e5-edbd459f1e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.