Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Uogólnione podejście do estymacji wykładnika Hursta na podstawie szeregów czasowych
Języki publikacji
Abstrakty
This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of selfsimilar time series of different nature.
W pracy przedstawiono uogólnione podejście do analizy fraktalnej samopodobnych procesów losowych przedstawianych w krótkich szeregach czasowych. Zaproponowano kilka etapów analizy fraktalnej. Wstępna analiza szeregów czasowych obejmuje eliminację krótkoterminowej zależności, identyfikację prawdziwej długoterminowej zależności oraz weryfikację hipotezy o istnieniu własności samopodobieństwa. Uwzględniono metody bezstronnej oceny przedziału czasowego wykładnika Hursta w przypadku stacjonarnych i niestacjonarnych szeregów czasowych. Zaproponowano metody walidacji uzyskanego oszacowania wykładnika Hursta. To podejście ma zastosowanie do badania samopodobnych szeregów czasowych o różnym charakterze.
Rocznik
Tom
Strony
28--31
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Kharkiv National University of Radioelectronics, Deptartment of Applied Mathematics
autor
- Kharkiv National University of Radioelectronics, Deptartment of Infocommunication Engineering
autor
- Kharkiv National University of Radioelectronics, Deptartment of Applied Mathematics
Bibliografia
- [1] Abry P., Flandrin P., Taqqu M.S., Veitch D.: Self-similarity and long-range dependence through the wavelet lens. Theory and applications of long-range dependence, Birkhäuser 2003.
- [2] Abry P., Veitch D.: Wavelet analysis of long-range dependent traffic. IEEE/ACM Transactions Information Theory, Vol. 1(44), 1998.
- [3] Bassingthwaighte J.B., Liebovitch L.S., West B.J.: Fractal Physiology. Oxford University Press, New York 1994.
- [4] Ching E.S.C., Tsang Yue-Kin : Multifractality and scale invariance in human heartbeat dynamics. Physical Review E, Vol. 76, 2007, 041910.
- [5] Clegg R.G.: A practical guide to measuring the Hurst parameter. Computing science technical report 2005. Vol. CS–TR–916.
- [6] Cont R., Tankov P.: Financial modelling with jump processes. Chapman & Hall CRC Press, 2004.
- [7] Czarkowski M., Kaczmarek S., Wolff M.: Influence of Self-Similar Traffic Type on Performance of QoS Routing Algorithms. INTL Journal of electronics and telecommunications, Vol. 62, no. 1, 2016, 81–87.
- [8] Feder J.: Fractals. Plenum, New York 1988.
- [9] Flandrin P., Gonzalves P., Abry P.: Scaling, Fractals and Wavelets. John Wiley & Sons, London 2009.
- [10] Harikrishnan K.P., Misra R., Ambika G: Can the multifractal spectrum be used as a diagnostic tool? Chaotic Modeling and Simulation, Vol. 1, 2013, 51–57.
- [11] Hurst H.E., Black R.P., Simaila Y.M.: Long-Term Storage: An Experimental Study. Constable, London 1965.
- [12] Kantelhardt J.W., Koscielny-Bunde E., Rego H.H.A., Havlin S., Bunde A.: Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 2001, 441–454.
- [13] Kantelhardt J.W.: Fractal and Multifractal Time Series. 2008. http://arxiv.org/abs/0804.0747 (available: 12.10.2017).
- [14] Kirichenko L., Deineko Zh.: Estimation of the self-similarity of stochastic time series by the wavelet analysis method. Radio-electronic and computer systems, Vol. 4 (38), 2009, 99–105.
- [15] Kirichenko L., Radivilova T., Deineko Zh.: Comparative Analysis for Estimating of the Hurst Exponent for Stationary and Nonstationary Time Series. Information Technologies & Knowledge, Vol. 5, No 4, 2011, 371–388.
- [16] Kirichenko L., Radivilova T.: Comparative analysis of statistical properties of the Hurst exponent estimates obtained by different methods. Information Models of Knowledg. ITHEA, Kiev–Sofia 2010.
- [17] Kirichenko L., Radivilova T.: Investigation of long-term dependence of network traffic using R / S-analysis. Automated control systems and automation devices, Vol. 135, 2006, 51–55.
- [18] Meléndez G.R.: The fractal nature of bitcoin: evidence from wavelet power spectra. Fundacion Universidad de las Americas Puebla 39, 2014. http://ssrn.com/abstract=2547281 (available: 12.10.2017).
- [19] Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1994, 1685– 1689.
- [20] Peters E.E.: Fractal Market Analysis: applying chaos theory to investment and economics. Wiley, 2003.
- [21] Sheluhin O.I., Smolskiy S.M., Osin A.V.: Self-similar processes in telecommunications. JohnWiley & Sons Ltd, Chichester 2007.
- [22] Stollings W.: High-speed networks and Internets. Performance and quality of service. New Jersey 2002.
- [23] Tsugawa S., Ohsaki H.: Emergence of Fractals in Social Networks: Analysis of Community Structure and Interaction Locality. 38th Annual Computer Software and Applications Conference, 2014.
- [24] Willinger W., Taqqu M.S., Erramilli A.A.: Bibliographical guide to self-similar traffic and performance modeling for modern high-speed network in ″Stohastic networks: theory and applications″. Claredon Press (Oxford University Press), Oxford 1996.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cb649a3-b69d-4e47-8f74-bdf6d2822472