Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Algorytm genetyczny w tłumieniu oscylacji w systemie elektroenergetycznym
Języki publikacji
Abstrakty
In this paper, Genetic algorithm (GA) optimization method is presented for optimal design of power system stabilizer (PSS). The design problem of the PSS parameters is formulated as an optimization problem and GA optimization method is used to search for optimal PSS parameters. The 2-area-4-machine power system, under a wide range of system configurations and operation conditions is investigated to illustrate the performance of the GA. The performance of the optimization method is compared with the conventional power system stabilizer. The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of the GA optimization method in optimal tuning of PSS, to enhance power system stability.
W artykule zaprezentowano metodę optymalizacji algorytmu stabilizacji systemu zasilania, z wykorzystaniem algorytmu genetycznego. Opracowana metoda została porównana w działaniu z konwencjonalnym stabilizatorem sieci. Przedstawiono wyniki przeprowadzonych symulacji nieliniowych i analizy wartości własnych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
219--222
Opis fizyczny
Bibliogr. 22 poz., schem., tab., wykr.
Twórcy
autor
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
autor
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
autor
- Department of Civil Engineering, Anar Branch, Islamic Azad University, Anar, Iran
Bibliografia
- [1] Messina A.R., Ramirez J., Canedo C., An investigation on the use of power system stabilizers for damping inter-area oscillations in longitudinal power systems, IEEE Transactions on Power Systems, 13(1998), No. 2, 552-559.
- [2] De Mello F., Nolan P., Laskowski T., Undrill J., Coordinated application of stabilizers in multimachine power systems, IEEE Transactions on Power Apparatus and Systems, 99(1980), No. 3, 892-901.
- [3] Eslami M., Shareef H., Mohamed A., Application of artificial intelligent techniques in PSS design: a survey of the state-ofthe-art methods, Przegląd Elektrotechniczny (Electrical Review), 87(2011), No. 4, 188-197.
- [4] Eslami M., Shareef H., Mohamed A. Optimal tuning of power system stabilizers using modified particle swarm optimization. In Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), Cairo University, Egypt, pp. 386-391.
- [5] Eslami M., Shareef H., Mohamed A., Application of PSS and FACTS Devices for Intensification of Power System Stability, International Review of Electrical Engineering, 5 (2010), No. 2, 552-570.
- [6] Eslami M., Shareef H., Mohamed A. Power System Stabilizer Design Based on Optimization Techniques. In 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1-7.
- [7] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Damping of Power System Oscillations Using Genetic Algorithm and Particle Swarm Optimization, International Review of Electrical Engineering, 5(2010), No. 6, 2745-2753.
- [8] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Improved particle swarm optimization with disturbance term for multimachine power system stabilizer design, Australian Journal of Basic and Applied Sciences, 4(2010), No. 12, 5768-5779.
- [9] Eslami M., Shareef H., Mohamed A. Coordinated design of PSS and TCSC controller for power system stability improvement. In The 9th International Power and Energy Conference (IPEC), Singapore, pp. 433-438.
- [10] Eslami M., Shareef H., Mohamed A. Coordination of PSS and FACTS damping controllers in power systems for dynamic stability improvement: A Review. In The 2nd International Conference on Engineering and ICT (ICEI), Melaka, Malaysia, pp. 30-36.
- [11] Eslami M., Shareef H., Mohamed A., Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos, Journal of Central South University of Technology, 18(2011), No. 5, 1579-1588.
- [12] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems, International Journal of Electrical Power and Energy Systems, 43(2012), No. 1, 1467–1478.
- [13] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Damping Controller Design for Power System Oscillations Using Hybrid GA-SQP, International Review of Electrical Engineering, 6(2011), No. 2, 888-896.
- [14] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Particle Swarm Optimization for Simultaneous Tuning of Static Var Compensator and Power System Stabilizer, Przegląd Elektrotechniczny (Electrical Review), 87(2011), No. 9A, 343-347.
- [15] Abido M., Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing, Electrical Power and Energy Systems, 22(2000)543–554.
- [16] Abido M., A novel approach to conventional power system stabilizer design using tabu search, International Journal of Electrical Power & Energy Systems, 21(1999), No. 6, 443-454.
- [17] Abido M., Abdel-Magid Y., Optimal design of power system stabilizers using evolutionary programming, Energy Conversion, IEEE Transactions on, 17(2002), No. 4, 429-436.
- [18] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller, Journal of Central South University of Technology, 19(2012), No. 4, 923-932.
- [19] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., PSS and TCSC Damping Controller Coordinated Design Using GSA, Energy Procedia, 14(2012)763-769.
- [20] Goldberg D. Genetic algorithms in search, optimization, and machine learning. 1989.
- [21] Holland J.H. Adaptation in natural and artificial systems. 1975(53).
- [22] Eslami M., Shareef H., Mohamed A. Design and Placement of Power System Stabilizer: Employing Particle Swarm Optimization. 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cb2e1c9-76e4-4127-b960-146b0c26b1bb