Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the fabrication and properties of Al2O3-Ni composites produced by centrifugal slip casting under a constant external magnetic field, aiming to optimize particle alignment and distribution for enhanced material performance. The research compares two series of samples made with nickel powders from Sigma Aldrich and Alfa Aesar. Series I exhibited non-uniform nickel particle distribution, while Series II demonstrated a more uniform dispersion and consistent particle size, likely due to improved alignment under the magnetic field. The optimal results from compression tests revealed that Series II achieved a compressive strength of 410 MPa, roughly twenty times greater than Series I, highlighting the effectiveness of the magnetic field in enhancing the microstructure and mechanical properties. These findings suggest that centrifugal slip casting with a constant magnetic field holds significant potential for applications in aerospace and electronics, where robust material performance under extreme conditions is required.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
232--248
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw, Poland
autor
- Institute of Power Engineering, National Research Institute, ul. Mory 8, 01-330 Warsaw, Poland
- Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, ul. Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Department of Materials Science, Rzeszów University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszow, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw, Poland
autor
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
- 1. Ortner HM, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. International Journal of Refractory Metals and Hard Materials. 2014;44:148–159. https://doi.org/10.1016/j.ijrmhm.2013.07.014.
- 2. Kordani N. 9 - Materials, design, and technology of body armor. In: ul-Islam S, Majumdar A, Butola B, editors. Advances in Healthcare and Protective Textiles. Textile Institute Book Series. Woodhead Publishing; 2023:259–301. https://doi.org/10.1016/B978-0-323-91188-7.00006-6.
- 3. Konopka K. Particle-reinforced ceramic matrix composites—selected examples. Journal of Composites Science. 2022;6:178. https://doi.org/10.3390/jcs6060178.
- 4. Rodriguez-Suarez T, Bartolome JF, Smirnov A, Lopez-Esteban S, Torrecillas R, Moya JS. Sliding wear behavior of alumina/nickel nanocomposites processed by a conventional sintering route. Journal of European Ceramic Society. 2011;31:1389–1395.
- 5. Li G, Ren R, Huang X, Guo J. Microstructure and mechanical properties of Al2O3/Ni composites. Ceramics International. 2004;30:977–982. https://doi.org/10.1016/j.ceramint.2003.11.004.
- 6. Woźniak J, et al. Al2O3-Ni composites for cutting tools. Journal of International Scientific Publications: Materials, Methods & Technologies. 2013;7:321–328.
- 7. Li G, Huang X, Guo J. Fabrication and mechanical properties of Al2O3–Ni composite from two different powder mixtures. Materials Science and Engineering: A. 2003;352:23–28. https://doi.org/10.1016/S0921-5093(02)00255-1.
- 8. Fahrenholtz WG. Reactive hot pressing of Al2O3-Ni composites. Journal of Materials Science. 2003;38:3073–3080. https://doi.org/10.1023/A:1024760810275.
- 9. Hutsaylyuk V, Student M, Posuvailo V, Student O, Sirak Y, Hvozdets’kyi V, Maruschak P, Veselivska H. The properties of oxide-ceramic layers with Cu and Ni inclusions synthesizing by PEO method on top of the gas-spraying coatings on aluminium alloys. Vacuum. 2020;179:109514. https://doi.org/10.1016/j.vacuum.2020.109514.
- 10. Hutsaylyuk V, Student M, Posuvailo V, Student O, Hvozdets’kyi V, Maruschak P, Zakiev V. The role of hydrogen in the formation of oxide-ceramic layers on aluminum alloys during their plasma-electrolytic oxidation. Journal of Materials Research and Technology. 2021;14:1682–1696. https://doi.org/10.1016/j.jmrt.2021.07.082.
- 11. Cavaliere P, Sadeghi B, Shabani A. Spark Plasma Sintering: Process Fundamentals. In: Spark Plasma Sintering of Materials: Advances in Processing and Applications. Springer International Publishing; 2019:3–20.
- 12. Laszkiewicz-Łukasik J, Putyra P, Klimczyk P, Podsiadło M, Bednarczyk K. Spark plasma sintering/field assisted sintering technique as a universal method for the synthesis, densification and bonding processes for metal, ceramic and composite materials. Journal of Applied Materials Engineering. 2020;60:2–3. https://doi.org/10.35995/jame60020005.
- 13. Ujah CO, Von Kallon DV, Aigbodion VS. High entropy alloys prepared by spark plasma sintering: Mechanical and thermal properties. Materials Today Sustainability. 2024;25:100639. https://doi.org/10.1016/j.mtsust.2023.100639.
- 14. Zhang J, Tu R, Goto T. Spark plasma sintering of Al2O3–Ni nanocomposites using Ni nanoparticles produced by rotary chemical vapour deposition. Journal of European Ceramic Society. 2014;34:435–441. https://doi.org/10.1016/j.jeurceramsoc.2013.08.014.
- 15. Isobe T, Daimon K, Sato T, Matsubara T, Hikichi Y, Ota T. Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties. Ceramics International. 2008;34:213–217. https://doi.org/10.1016/j.ceramint.2006.08.017.
- 16. Kelly JP, Elmer JW, Ryerson FJ, Lee JRI, Haslam JJ. Directed energy deposition additive manufacturing of functionally graded Al-W composites. Additive Manufacturing. 2021;39:101845. https://doi.org/10.1016/j.addma.2021.101845.
- 17. Zhu W, Yan C, Shi Y, Wen S, Liu J, Wei Q, Shi Y. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Scientific Reports. 2016;6:33780. https://doi.org/10.1038/srep33780.
- 18. Gómez-Rodríguez C, García-Quiñonez LV, Verdeja LF, Castillo-Rodríguez GA, Aguilar-Martínez JA, Mariño-Gámez AE, Fernández-González D. Selective laser sintering of alumina-molybdenum nanocomposites. Ceramics International. 2022;48:29540–29545. https://doi.org/10.1016/j.ceramint.2022.08.058.
- 19. Zygmuntowicz J, Miazga A, Wiecińska P, Kaszuwara W, Konopka K, Szafran M. Combined centrifugal-slip casting method used for preparation of Al2O3-Ni functionally graded composites. Composites Part B: Engineering. 2018;141:158–163. https://doi.org/10.1016/j.compositesb.2017.12.056.
- 20. Zygmuntowicz J, Wiecińska P, Miazga A, et al. Al2O3/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting method. Journal of Thermal Analysis and Calorimetry. 2017;130:123–130. https://doi.org/10.1007/s10973-017-6232-5.
- 21. Zygmuntowicz J, Wachowski M, Miazga A, Konopka K, Kaszuwara W. Characterization of Al2O3/Ni composites manufactured via CSC technique in magnetic field. Composites Part B: Engineering. 2019;156:113–120. https://doi.org/10.1016/j.compositesb.2018.08.079.
- 22. Zygmuntowicz J, Kosiorek M, Piotrkiewicz P, Wachowski M, Szachogłuchowicz I, Kaszuwara W, Konopka K, Falkowski P, Piątek M. Gradient composites Al2O3-Ni obtained via the CSC technique in a magnetic field – microstructure and mechanical properties. Journal of Alloys and Compounds. 2024;1008:176532. https://doi.org/10.1016/j.jallcom.2024.176532.
- 23. Hidber PC, Graule TJ, Gauckler LJ. Citric acid: a dispersant for aqueous alumina suspensions. Journal of the American Ceramic Society. 1996;79:1857–1867. https://doi.org/10.1111/j.1151-2916.1996.tb08006.x.
- 24. Gizowska M, Konopka K, Szafran M. Properties of water-based slurries for fabrication of ceramic-metal composites by slip casting method. Archives of Metallurgy and Materials. 2011;56:1105–1110. https://doi.org/10.2478/v10172-011-0123-8.
- 25. Hidber PC, Graule TJ, Gauckler LJ. Competitive adsorption of citric acid and poly(vinyl alcohol) onto alumina and its influence on the binder migration during drying. Journal of the American Ceramic Society. 1995;78:1775–1780. https://doi.org/10.1111/j.1151-2916.1995.tb08888.x.
- 26. Michalski J, Wejrzanowski T, Pielaszek R, Konopka K, Łojkowski W, Kurzydłowski KJ. Application of image analysis for characterization of powders. Materials Science-Poland. 2005;23:79–86.
- 27. Kurzydłowski KJ, Ralph B. The Quantitative Description of the Microstructure of Materials. CRC Press; 1995.
- 28. Wejrzanowski T, Spychalski W, Rożniatowski K, Kurzydłowski K. Image based analysis of complex microstructures of engineering materials. International Journal of Applied and Computational Mathematics. 2008;18:33–39. https://doi.org/10.2478/v10006-008-0003-1.
- 29. Wejrzanowski T, Kurzydłowski KJ. Stereology of grains in nano-crystals. Solid State Phenomena. 2003;94:221–228. https://doi.org/10.4028/www.scientific.net/SSP.94.221.
- 30. Neu V, Schultz L. Magnets: Mechanically Alloyed. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P, editors. Encyclopedia of Materials: Science and Technology. Elsevier; 2001:1–4. https://doi.org/10.1016/B0-08-043152-6/00890-1.
- 31. Crangle J, Goodman GM. The Magnetization of Pure Iron and Nickel. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1971;321:477–491. http://www.jstor.org/stable/77809.
- 32. Chikazumi S. Physics of Ferromagnetism. Clarendon Press; 1997.
- 33. Jiles DC, Atherton DL. Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials. 1986;61:48–60. https://doi.org/10.1016/0304-8853(86)90066-1.
- 34. Zygmuntowicz J, Kosiorek M, Wachowski M, Śnieżek L, Szachogłuchowicz I, Piotrkiewicz P, Kaszuwara W, Konopka K. The structural and mechanical properties of Al2O3–Ni composites obtained by magnetic field-assisted centrifugal slip casting. Materials. 2024;17:3902. https://doi.org/10.3390/ma17163902.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca9d538-f939-4cce-bcf0-833a96da718e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.