PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing feldspar luminescence dating of young archaeological heated materials using potshards from Pella (Tell Tabqat Fahl) in the Jordan valley

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent developments in the use of more stable feldspar signals in the luminescence dating of sediments offer the possibility of obtaining accurate feldspar luminescence ages for ceramic artefacts; this is especially interesting in locations which do not provide suitable quartz extracts. Here we examine the application of the stable infrared stimulated luminescence signal measured at elevated temperature (in this case 290°C; pIRIR290) after stimulation at about room temperature to Levantine pottery samples. A total of 52 potsherds were collected from three superimposed iron-age units at Pella (Jordan); based on 14C dating, typology and seriation these units were deposited between 700 and 900 BCE. Sand-sized quartz extracts were unsuitable, and there was insufficient sand-sized feldspar, and so polymineral fine grains were chosen for dating. Various tests for reliability were undertaken (dose recovery, dependence of De on first stimulation temperature etc.). The pIRIR signals are weak, and 14 potsherds were rejected on this basis. Of the remainder, 3 were confidently identified as outliers. Based on those sherds for which IR signals were sufficiently intense, we use the ratio of the IR50 to pIRIR290 signals to argue that these outliers do not arise from incomplete resetting during manufacture. The ages from each layer are considerably over dispersed (typically by ~25%) but average ages for each unit are consistent with each other and with the expected age range. The average OSL age for the site is 2840 ± 220 years (n = 35), with the overall uncertainty dominated by systematic uncertainties; this average is consistent with the range of 14C ages from 970–1270 BCE reported from across the destruction horizon. We conclude that the pIRIR290 signal is delivering accurate ages, but that the variability in age from shard to shard is much greater than would be expected from known sources of uncertainty. This demonstrates the need for site ages to be based on multiple samples; individual shard ages are unlikely to be sufficiently accurate.
Słowa kluczowe
Czasopismo
Rocznik
Strony
98--110
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Faculty of Archaeology and Anthropology, Yarmouk University, Jordan.
  • Nordic Laboratory for Luminescence Dating, department of Geoscience, Aarhus University, Denmark.
  • Center for Nuclear Technologies, Risø Campus, Technical University of Denmark, Denmark.
autor
  • Nordic Laboratory for Luminescence Dating, department of Geoscience, Aarhus University, Denmark.
autor
  • Department of Archaeology, University of Sydney, Australia.
autor
  • Institute of Ancient Near Eastern Archaeology, Free University Berlin, Germany.
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence dating. London: Academic Press.
  • 2. al Khasawneh S, Murray A, Bonatz D and Freisleben T, 2015. Testing the application of post IR IRSL dating to Iron-and Viking-age ceramics and heated stones from Denmark. Quaternary Geochronology 30: 386–391, DOI 10.1016/j.quageo.2015.05.014.
  • 3. Ankjærgaard C and Murray AS, 2007. Total beta and gamma dose rates in trapped charge dating based on beta counting. Radiation Measurements 42: 352–359, DOI 10.1016/j.radmeas.2006.12.007.
  • 4. Auclair M, Lamothe M and Huot, S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37: 487–492, DOI 10.1016/S1350-4487(03)00018-0.
  • 5. Bøtter-Jensen L, Andersen C, Duller G and Murray A, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535– 541, DOI 10.1016/S1350-4487(03)00020-9.
  • 6. Bøtter-Jensen L and Mejdahl V, 1985. Determination of potassium in feldspars by beta counting using a GM multicounter system. Nuclear Tracks and Radiation Measurements 10(4–6): 663–666, DOI 10.1016/0735-245X(85)90073-0.
  • 7. Bøtter-Jensen L and Mejdahl V, 1988. Assessment of beta dose-rate using a GM multicounter system. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1): 187–191, DOI 10.1016/1359-0189(88)90062-3.
  • 8. Bourke S, 2012. Exploring Pella’s Bronze Age Temple Complex.
  • 9. Bourke S, 2013. Preclassical Pella in Jordan: A Conspectous of Recent Work. ACOR Newsletter, 25(1), pp. 1–5.
  • 10. Bourke SJ, 2000. Pella in The Early Bronze Age. In G. Philip and D. Baird (Eds.), Ceramics and Changes in the Early Bronze Age Southern Levant (pp. 233–254). Sheffield: Scheffield Academic Press.
  • 11. Bourke SJ, 2011. Pella in Jordan 2003–2005: Further Explorations in the Bronze Age Temple Precinct. Mediterranean Archaeology 24: 121–130.
  • 12. Bourke SJ, 2014. Pella in Jordan 2013. Near Eastern Arhaeology Foundation Bulletin 57: 17–21.
  • 13. Bourke SJ, Zoppi U, Meadows J, Hua Q and Gibbins S, 2009. The Beginning of the Early Bronze Age in North Jordan Valley; New C14 Determinations from Pella in Jordan. Radiocarbon 51(3): 905–913.
  • 14. Bourke S, Sparks R and Shroder M, 2006. Pella in the Middle Bronze Age. In P. Fischer (Ed.), The Chronology of Jordan Valley.
  • 15. Buylaert J, Jain M, Murray AS, Thomsen K, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41: 435–451, DOI 10.1111/j.1502-3885.2012.00248.x.
  • 16. Buylaert J, Murray A, Thomsen K and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
  • 17. Buylaert J, Thiel C, Murray A, Vandenberghe D, Shuangwen Y and Huayu L, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38(4): 432–440, DOI 10.2478/s13386-011- 0047-0.
  • 18. Duller G, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25(1): 15–24.
  • 19. Edwards P, 2013. Wadi Hammeh 27, an Early Natufian Settlement at Pella in Jordan. Brill.
  • 20. Fischer PM, 2013. Tell Abu Al-Kharaz in the Jordan Valley: The Iron Age (Vol. III). Vienna: Orientalistische Literaturzeitung.
  • 21. Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14: 15–17.
  • 22. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29(1): 5–8.
  • 23. Huntley D and Lamothe M, 2001. Ubiquity of anomalous fading Kfeldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38: 1093–1106, DOI 10.1139/e01-013.
  • 24. Hütt G, Jaek I and Tchonka J, 1988. Optical dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7(3): 381–385, DOI 10.1016/0277-3791(88)90033-9.
  • 25. McNicoll A, Henbury-Tenison J, Hennessy B, Potts T, Smith R, Walmsley A and Watson P, 1992. Pella in Jordan (Vol. 2). Sydney: (Mediterranean Archaeology.
  • 26. Murray AS, 1996. Developments in optically transferred luminescence and photo-transferred thermoluminescence dating: application to a 2000-year sequence of flood deposits. Geochimica et Cosmochimica Acta 60: 565–576, DOI 10.1016/0016- 7037(95)00418-1.
  • 27. Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152: 163–180, DOI 10.1016/S0012-821X(97)00150-7.
  • 28. Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44: 554–559, DOI 10.1016/j.radmeas.2009.02.004.
  • 29. Murray A and Wintle A, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37: 377–381, DOI 10.1016/S1350-4487(03)00053-2.
  • 30. Murray A, Marten R, Johnston A and Martin P, 1987. Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115(2): 263–288, DOI 10.1007/BF02037443.
  • 31. Ollerhead J, Huntley D and Berger G, 1994. Luminescence dating of sediments from Buctouche Spit, New Brunswick. Earth Sceince 31: 523–531, DOI 10.1139/e94-046.
  • 32. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23: 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 33. Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. PACT 6: 17–25.
  • 34. Reimann T, Thomsen K, Jain M, Murray A and Frechen M, 2012. Single-grain dating of young sediments using the pIRIR signal from feldspar. Quaternary Geochronology 11: 28–41, DOI 10.1016/j.quageo.2012.04.016.
  • 35. Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments – A test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6(2): 207– 222, DOI 10.1016/j.quageo.2010.10.001.
  • 36. Thiel C, Buylaert JP, Murray AS, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) - Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234: 23–31, DOI 10.1016/j.quaint.2010.05.018.
  • 37. Thomsen K, Murray A and Jain M, 2011. Stability of IRSL signals from sedimentary K-feldspar samples. Geochronometria 38: 1–13, DOI 10.2478/s13386-011-0003-z.
  • 38. Thomsen K, Murray A, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43: 1474–1486 , DOI 10.1016/j.radmeas.2008.06.002.
  • 39. Wallinga J, Murray A and Wintle A, 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32(5): 529–533, DOI 10.1016/S1350- 4487(00)00091-3.
  • 40. Wild E-M and Fischer P, 2013. Chapter 4- Radiocarbon Dating. In P. Fischer, Tell Abu Kharaz. Volume III. The Iron Age (pp. 457–463). Vienna: Austrian Academy of Sciences Press.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca50048-0a61-497f-b01f-34fb2343c759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.