Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Numerical analysis of combustion in HCCI engine with EGR powered by biodiesel
Języki publikacji
Abstrakty
Prezentowana praca zawiera wyniki modelowania w programie AVL Fire, jednocylindrowego, badawczego silnika z systemem spalania HCCI, zasilanego biodieslem - FAME. W silniku do sterowania procesem spalania zastosowano zewnętrzną recyrkulację spalin - EGR. W ramach pracy przeprowadzono badania wpływu recyrkulacji spalin na, istotne z punku widzenia pracy silnika, parametry, tj. kąt początku spalania, czas trwania spalania, ciśnienie w cylindrze i wartość ciśnienia indykowanego, szybkość wywiązywania się ciepła oraz emisje jednego z najbardziej toksycznych składników spalin - tlenku azotu. Dzięki przeprowadzonym obliczeniom można stwierdzić, że zastosowanie recyrkulacji spalin w silniku z samoczynnym zapłonem jednorodnej mieszanki biodiesla z powietrzem przyczynia się do opóźnienia początku spalania i znacznie wydłuża czas jego trwania. Wzrost opóźnienia spalania HCCI powoduje z kolei redukcję stężenia tlenku azotu w gazach wydechowych przy jednoczesnym wzroście ciśnienia indykowanego.
The paper presents the CFD modelling results of the 1-cylinder HCCI test engine. Modelling was carried out using AVL Fire code. The test engine was powered by biodiesel-FAME fuel. The exhaust gas recirculation EGR used as factors of controlling the combustion process. The impact of EGR on the test engine parameters such as the start of combustion, combustion duration, in-cylinder pressure and indicated mean effective pressure, rate of heat release and NO emission were analyzed. On the basis of results stated that EGR for HCCI engine affects on the ignition delay and significantly increases the combustion duration. The increase in ignition delay of HCCI engine causes the reduction of NOx emission in exhaust gasses while increases the indicated mean effective pressure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
26--33
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
Bibliografia
- 1. AVL FireVersion 2013. Emission Module Manual. AVL List GmbH Hans-List-Platz 1, A-8020 Graz, Austria.
- 2. Bhave A., Kraft M., Mauss F., Oakley A., Zhao H.: Evaluating the EGR-AFR Operating Range of a HCCI Engine, “SAE Paper” 2005, No. 2005-01-0161.
- 3. Cinar C., Uyumaz A., Solmaz H., Sahin F, Polat S., Yilmaz E.: Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. “Fuel Processing Technology” 2015, Vol. 130, p. 275–281.
- 4. Colin O, Benkenida A.: The 3-Zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion. “Oil Gas Sci Technol – Rev” 2004, Vol. 59, p. 593–609.
- 5. Engelen B.: Guidelines for handling and blending FAME, Report no.9/09. CONCAWE, Brussels November 2009. http://www.concawe.org, Available: 07.09.2016.
- 6. Hillion M., Chauvin J., Petit N.: Controlling the start of combustion on an HCCI Diesel engine, American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008.
- 7. Jamrozik A, Tutak W.: A study of performance and emissions of SI engine with a two-stage combustion system. “Chemical and Process Engineering” 2011, Vol. 32, p. 453-471.
- 8. Jamrozik A.: Lean combustion by a pre-chamber charge stratification in a stationary spark ignited engine. “Journal of Mechanical Science and Technology” 2015, Vol. 29, p. 2269-2278.
- 9. Jiménez-Espadafor F., Torres M., Velez J.A., Carvajal E., Becerra J.A.: Experimental analysis of low temperature combustion mode with diesel and biodiesel fuels: A method for reducing NOx and soot emissions. “Fuel Processing Technology” 2012, Vol. 103, p. 57–63.
- 10. Johnson P.E., Ashlock D.A., Bryden K.M.: A novel engineering tool for creative design of fluid systems. “Engineering with Computers” 2014 Vol. 30, p. 15–29.
- 11. Li Y.X., McLaughlin N.B., Patterson B.S., Burtt S.D.: Fuel efficiency and exhaust emissions for biodiesel blends in an agricultural tractor. “Canadian Biosystems Engineering” 2006, Vol. 48, p. 215-222.
- 12. Lu X.C., Chen W., Huang Z.: A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1: The basic characteristics of HCCI combustion. “Fuel” 2005, Vol. 84, p. 1074–1083.
- 13. Lu X.C., Chen W., Huang Z.: A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion. “Fuel” 2005, Vol. 84, p. 1084–1092.
- 14. Oh Ch.H., Jamsran N., Lim O.T.: A numerical investigation about the EGR effect under the condition of boost pressure on HCCI autoignition. “Energy Procedia” 2015, No. 68, p. 398–408.
- 15. Olsson J-O, Tunestal P., Ulfvik J., Johansson B.: The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine, ”SAE Special Publications” 2003, No. 2003-01-0743.
- 16. Tutak W, Jamrozik A.: Generator gas as a fuel to power a diesel engine. “Thermal Science” 2014, Vol. 18, p. 206-216.
- 17. Tutak W, Jamrozik A: Characteristics of the flow field in the combustion chamber of the internal combustion test engine. “Chemical and Process Engineering” 2011, Vol. 32, p. 203-214.
- 18. Tutak W., Jamrozik A., Pyrc M., Sobiepański M.: Investigation on combustion process and emissions characteristic in direct injection diesel engine powered by wet ethanol using blend mode. “Fuel Processing Technology” 2016, Vol. 149, p. 86–95.
- 19. Tutak W.: Bioethanol E85 as a fuel for dual fuel diesel engine. “Energy Conversion and Management” 2014, Vol. 86 p. 39-48.
- 20. Vehicle Technologies Program, U.S. Department of Energy, Energy Efficiency and Renewable Energy, DOE/GO-102011-3001, February 2011. www.eere.energy.gov/informationcenter, Available: 15.04.2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca44fb8-b81b-4e30-962d-2d956c0c9695