PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Numerical Modeling of Thermal Stress Distribution in Thermal Barrier Coatings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of numerical calculations of temperature and thermal stress distribution in thermal barrier coatings deposited by thermal spraying process on the nickel based superalloy. An assumption was made to apply conventional zirconium oxide modified with yttrium oxide (8YSZ) and apply pyrochlore type material with formula La2Zr2O7. The bond coat was made of NiCoCrAlY. Analysis of the distribution of temperature and stresses in ceramic coatings of different thicknesses was performed in the function of bond-coat thickness and the type of ceramic insulation layer. It was revealed that the thickness of NiCrAlY bond-coat has not significant influence on the stress distribution, but there is relatively strong effect on temperature level. The most important factor influenced on stress distribution in TBC system is related with type and properties of ceramic insulation layer.
Słowa kluczowe
Twórcy
autor
  • Silesian University of Technology, Institute of Metals Technology, Katowice, Poland
Bibliografia
  • [1] Z. Orłoś, Naprężenia cieplne, Wydawnictwo Naukowe PWN, Warszawa (1991).
  • [2] Wł. Włosiński, Połączenia ceramiczno-metalowe. Wyd. Nauk. PWN, Warszawa (1984).
  • [3] W. A. Zdaniewski, J. C. jr. Conway, H. P. Kirchner, J. of the American Ceramic Society 70 (2), (1987).
  • [4] A. P. Gopkalo, A. V. Rutkovskyy, Fatigue & Fracture of Eng. Materials & Structures 34, 12, 1012-1020 (2011).
  • [5] V. Cazajus, S. Seguy, H. Welemane, M. Karama, Applied Mechanics and Materials 146, 185-196 (2012).
  • [6] MRS Bulletin, Thermal-barrier coatings for more efficient gas-turbine engines, nr 10, Cambridge University (2012).
  • [7] G. Moskal, L. Swadźba, M. Hetmańczyk, at al., J. of the European Ceramic Society 32, 2035-2042 (2012).
  • [8] G. Moskal., A. Jasik, J. Therm. Anal. Calorimetry 126 (1), 9-17 (2016).
  • [9] L. Swadźba, G. Moskal, B. Mendala, M. Hetmańczyk, Arch. of Metallurgy and Materials 53 (3), 945-954 (2008).
  • [10] G. Moskal, A. Rozmysłowska, Advanced Materials Research 89, 739-744 (2010).
  • [11] X. Guo, J. Hang, Materials Today: Proceedings 1, 25-34 (2014).
  • [12] R. Vassen, et al., J. of the American Ceramic Society, 83 (8), 2023-2028 (2000).
  • [13] A. Jasik, Rudy Metale 61 (2), 78-82 (2016).
Uwagi
EN
This work was supported by Polish Ministry for Science and Higher Education under internal grant BK264/RM2/2016 for Institute of Metals Technology, Silesian University of Technology, Poland.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca2c3a5-96f0-41fc-a305-19b18ecfdba2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.