PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eutectic Structures Competition in the Stripes Strengthening the (Zn) – Single Crystal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some eutectic stripes have been generated in a hexagonal (Zn) - single crystal. The stripes are situated periodically with the constant inter stripes spacing. The eutectic structure in the stripes consists of strengthening inter-metallic compound, Zn16Ti, and (Zn) – solid solution. The rod-like irregular eutectic structure (with branches) appears at low growth rates. The regular lamellar eutectic structure is observed at middle growth rates. The regular rod-like eutectic structure exists exclusively in the stripes at some elevated growth rates. A new thermodynamic criterion is recommended. It suggests that this eutectic regular structure is the winner in a morphological competition for which the minimum entropy production is lower. A competition between the regular rod-like and the regular lamellar eutectic growth is described by means of the proposed criterion. The formation of branches within irregular eutectic structure is referred to the state of marginal stability. A continuous transitions from the marginal stability to the stationary state are confirmed by the continuous transformations of the irregular eutectic structure into the regular one.
Rocznik
Strony
95--102
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Kraków, Reymonta 25, Poland
autor
  • Department of Chemistry, Norwegian University of Science and Technology,7491 Trondheim, Norway
autor
  • Department of Chemistry, Norwegian University of Science and Technology,7491 Trondheim, Norway
autor
  • Department of Foundry Engineering, Silesian University of Technology, Towarowa 7, 44-100 Gliwice, Poland
autor
  • Faculte des Sciences et Techniques, Universite d’Aix-Marseille, 13397 Marseille, Av. Escadrille Normandie-Niemen, France
Bibliografia
  • [1] Boczkal, G., Mikułowski, B. & Wołczyński, W. (2010). Oscillatory Structure of the Zn-Cu-Ti Single Crystals. Materials Science Forum.649, 113-118.
  • [2] Wołczyński, W. (2013). Thermodynamic Pattern Selection in the Stripes Generated Periodically during the (Zn) – Single Crystal Growth. Archives of Metallurgy and Materials. 58, 309-313.
  • [3] Wołczyński, W., Krajewski, W., Ebner, R. & Kloch, J. (2002). The Use of Equilibrium Phase Diagram for the Calculation of Non-Equilibrium Precipitates in Dendritic Solidification. Theory. Calphad. 25, 401-408.
  • [4] Wołczyński, W. (2000). Back-Diffusion Phenomenon during the Crystal Growth by the Bridgman Method. In Szmyd, J. &Suzuki K. (Eds.), Modelling of Transport Phenomena in Crystal Growth (pp. 19-59). WIT Press, Southampton–Boston.
  • [5] Murray, J. (1987). Phase Diagram of Binary Titanium Alloys .In Massalski T. (Ed.), Binary Alloy Phase Diagrams(pp. 336-339) ASM International, Metals Park, Ohio.
  • [6] Fisher, D. J. & Kurz, W. (1980). A Theory of Branching Limited Growth of Irregular Eutectics. Acta Metallurgica 28, 777-794.
  • [7] Glansdorff, P. & Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley–Interscience, John Wiley & Sons, London–New York–Sydney–Toronto.
  • [8] Colin, M., Lesoult, G. & Turpin, M. (1975). Influence de la Forme de l’Interface Liquid/Solid sur la Diffusion Chimique pendant une Solidification Eutectique Lamellaire. Journal of Crystal Growth. 28, 103-108.
  • [9] Jackson, K.A. & Hunt, J. D. (1966). Lamellar and Rod Eutectic Growth. Transactions of the Metallurgical Society of the AIME. 236. 1129-1142.
  • [10] Wołczyński, W. (2007). Concentration Micro-Field for Lamellar Eutectic Growth. Defect and Diffusion Forum. 272, 123-138.
  • [11] Wołczyński, W. (1990). Role of Physical Factors in Solid-Liquid Interface Formation during Oriented Eutectic Growth. Crystal Research and Technology. 25, 1303-1309.
  • [12] Wołczyński, W. & Billia, B. (1996). Influence of Control and Material Parameters on Regular Eutectic Growth and Inter-Lamellar Spacing Selection. Materials Science Forum. 215/216, 313-322.
  • [13] Kjelstrup, S. & Bedeaux, D. (2008). Non-Equilibrium Thermodynamics of Heterogeneous Systems. InRasettiM. (Ed.). World Scientific Pulishing Co. Ltd., New Jersey–London–Singapore–Beijing–Shanghai–Hong Kong–Taipei–Chennai.
  • [14] Wołczyński, W. (1989). Lamellar Eutectic Growth at Minimum Entropy Production. Crystal Research and Technology. 24, 1121-1127.
  • [15] Wołczyński, W. (1992). Parabolic Approximation to the Shape of Oriented Eutectic Interface. Crystal Research and Technology. 27, 195-200.
  • [16] Major, J.F. & Rutter, J.W. (1989). Effect of Strontium and Phosphorus on Solid / Liquid Interface of Al-Si Eutectic. Materials Science and Technology. 5, 645-656.
  • [17] Cupryś, R. & Wołczyński, W. (1999). Influence of the Growth Parameters of an Eutectic onto the Transition of Flake into Fibre. Structure in Al-Si Alloy. Acta Metallurgica Slovaca. 5, 359-364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca1cedd-e1b9-4d51-bf5e-d1f281bdf2d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.