PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on performance of concrete containing different content of steel slag stone in wall brick structure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel slag stone can be used as a substitute for coarse aggregate in concrete. In this study, the performance of steel slag concrete (SSC) in the wall brick structure was analyzed. The specimens with a steel slag replacement rate of 0%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% were designed, and the slump, stability, and carbonation resistance were tested. The results showed that the slump decreased with the increase of the replacement rate of steel slag stone. At the 60th min, the slump of SSC50 was 74 mm, which was 25.25% smaller than SSC00. When the replacement rate was more than 30%, cracks or fractures appeared, and the stability was destroyed. Twenty-eight days after the carbonation experiment, with the increase of the replacement rate, the carbonation resistance of the specimen decreased, and the performance was best when the replacement rate was 25%. The experimental results show that the performance of SSC is the best when the replacement rate of steel slag stone is 25%, which can be further promoted and applied in practice.
Rocznik
Strony
313--324
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
  • Wuchang University of Technology, Wuhan, China
Bibliografia
  • [1] M.F.M. Jaafar, H.M. Saman, M.N.M. Sidek, K. Muthusamy, N. Ismail, “Performance of nano metaclay on chloride diffusion for ultra-high performance concrete”, IOP Conference Series: Earth and Environmental Science, 2021, vol. 682, no. 1, art. ID 012002, DOI: 10.1088/1755-1315/682/1/012002.
  • [2] J.G. Kessy, M.G. Alexander, H. Beushausen, “Concrete durability standards: international trends and the South African context: technical paper”, Journal of the South African Institution of Civil Engineers, 2015, vol. 57, no. 1, pp. 47-58, DOI: 10.17159/2309-8775/2015/v57n1a5.
  • [3] M. Bravo, J.D. Brito, J. Pontes, L. Evangelista, “Durability performance of concrete with recycled aggregates from construction and demolition waste plants”, Construction and Building Materials, 2015, vol. 77, pp. 357-369, DOI: 10.1016/j.conbuildmat.2014.12.103.
  • [4] F. Nosouhian, D. Mostofinejad, H. Hasheminejad, “Concrete Durability Improvement in a Sulfate Environment Using Bacteria”, Journal of Materials in Civil Engineering, 2016, vol. 28, no. 1, DOI: 10.1061/(ASCE)MT.1943-5533.0001337.
  • [5] Y. Cheng, Z. Shi, “Experimental Study on Nano-SiO_2 Improving Concrete Durability of Bridge Deck Pavement in Cold Regions”, Advances in Civil Engineering, 2019, vol. 2019, art. ID 5284913, pp. 1-9, DOI: 10.1155/2019/5284913.
  • [6] Z. Liu, W. Hansen, “Effect of hydrophobic surface treatment on freeze-thaw durability of concrete”, Cement and Concrete Composites, 2016, vol. 69, pp. 49-60, DOI: 10.1016/j.cemconcomp.2016.03.001.
  • [7] B.W. Chong, R. Othman, R.P. Jaya, M.R.M. Hasan, A.V. Sandu, M. Nabiałek, B. Jeż, P. Pietrusiewicz, D. Kwiatkowski, P. Postawa, M.M.A.B. Abdullah, “Design of experiment on concrete mechanical properties prediction: a critical review”, Materials, 2021, vol. 14, no. 8, DOI: 10.3390/ma14081866.
  • [8] S.P. Palanisamy, G. Maheswaran, M. Annaamalai, V. Venkatesh, “Steel slag to improve the high strength of concrete”, International Journal of ChemTech Research, 2015, vol. 7, no. 5, pp. 2499-2505.
  • [9] J. Zhao, P. Yan, D. Wang, “Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle”, Journal of Cleaner Production, 2017, vol. 156, pp. 50-61, DOI: 10.1016/j.jclepro.2017.04.029.
  • [10] M.R. Hainin, M.A. Aziz, Z. Ali, R.P. Jaya, M. Elsergany, H. Yaacob, “Steel slag as a road construction material”, Jurnal Teknologi, 2015, vol. 73, no. 4, pp. 33-38, DOI: 10.11113/jt.v73.4282.
  • [11] J.E. Kim, D.W. Ha, Y.H. Kim, “Separation of Steel Slag From Landfill Waste for the Purpose of Decontamination Using a Superconducting Magnetic Separation System”, IEEE Transactions on Applied Superconductivity, 2015, vol. 25, no. 3, pp. 1-4, DOI: 10.1109/TASC.2014.2365954.
  • [12] D. Ning, Y. Liang, Z. Liu, J. Xiao, A. Duan, “Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil”, Plos One, 2016, vol. 11, no. 12, DOI: 10.1371/journal.pone.0168163.
  • [13] S. Peng, Z. Guo, “Preparation of steel slag porous sound-absorbing material using coal powder as pore former”, Journal of Environmental Sciences, 2015, vol. 36, pp. 67-75, DOI: 10.1016/j.jes.2015.04.010.
  • [14] J. Diao, W. Zhou, Z. Ke, Y. Qiao, T. Zhang, X. Liu, B. Xie, “System assessment of recycling of steel slag in converter steelmaking”, Journal of Cleaner Production, 2016, vol. 125, pp. 159-167, DOI: 10.1016/j.jclepro.2016.03.040.
  • [15] X.D. Xiang, J.C. Xi, C.H. Li, X.W. Jiang, “Preparation and application of the cement-free steel slag cementitious material”, Construction and Building Materials, 2016, vol. 114, pp. 874-879, DOI: 10.1016/j.conbuildmat.2016.03.186.
  • [16] L. Wang, J. Yan, Q. Wang, B.H. Wang, A. Ishimwe, “Study on Permeability of Steel Slag and Steel Slag Modifying Silt Soil as New Geo-Backfill Materials”, Advances in Civil Engineering, 2019, vol. 2019, no. 11, pp. 1-14, DOI: 10.1155/2019/5370748.
  • [17] E. Oluwasola, M.R. Hainin, M. Aziz, “Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction”, Transportation Geotechnics, 2015, vol. 2, pp. 47-55, DOI: 10.1016/j.trgeo.2014.09.004.
  • [18] N. Palankar, A. Shankar, B.M. Mithun, “Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates”, Journal of Cleaner Production, 2016, vol. 129, pp. 437-448, DOI: 10.1016/j.jclepro.2016.04.033.
  • [19] M. Guo, B. Hu, F. Xing, X. Zhou, M. Sun, L. Sui, Y. Zhou, “Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis”, Construction and Building Materials, 2020, vol. 234, art. ID 117339, DOI: 10.1016/j.conbuildmat.2019.117339.
  • [20] M. Amiri, F. Hatami, E.M. Golafshani, “Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete”, Case Studies in Construction Materials, 2021, vol. 15, art. ID e00639, DOI: 10.1016/j.cscm.2021.e00639.
  • [21] L. Yang, M. Yang, P. Xu, X. Zhao, B. Hao, H. Li, “Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag”, Water, 2017, vol. 9, no. 10, DOI: 10.3390/w9100757.
  • [22] N. Suri, Y.A. Babu, “Experimental investigations on partial replacement of steel slag as coarse aggregates and eco sand as fine aggregate”, International Journal of Civil Engineering & Technology, 2016, vol. 7, no. 5, pp. 322-328.
  • [23] Z. Chen, S. Wu, J. Wen, M. Zhao, M. Yi, J. Wan, “Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture”, Construction and Building Materials, 2015, vol. 93, pp. 911-918, DOI: 10.1016/j.conbuildmat.2015.05.070.
  • [24] X. Yu, Z. Tao, T.Y. Song, Z. Pan, “Performance of concrete made with steel slag and waste glass”, Construction and Building Materials, 2016, vol. 114, pp. 737-746, DOI: 10.1016/j.conbuildmat.2016.03.217.
  • [25] M. Talaei, D. Mostofinejad, “Mechanical properties of fiber-reinforced concrete containing waste porcelain aggregates under elevated temperatures”, Construction and Building Materials, 2021, vol. 289, art. ID 122854, DOI: 10.1016/j.conbuildmat.2021.122854.
  • [26] E.A. Oluwasola, M.R. Hainin, M.M.A. Aziz, “Comparative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings”, Journal of Cleaner Production, 2016, vol. 122, pp. 315-325, DOI: 10.1016/j.jclepro.2016.02.051.
  • [27] G. Bai, C. Zhu, C. Liu, B. Liu, “An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties”, Construction and Building Materials, 2020, vol. 240, art. ID 117978, DOI: 10.1016/j.conbuildmat.2019.117978.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ca063df-a177-414d-bf6a-48f23fb06f85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.