Identyfikatory
Warianty tytułu
Molar orientation entropy and structure of the self-associated liquids
Języki publikacji
Abstrakty
Research on the structural effects of intermolecular interactions not only brings us closer to a better understanding the macroscopic properties of liquids, but also allows one to modify these properties. Intermolecular dipolar couplings and hydrogen bonds are the most common interactions in liquids leading to formation of multimolecular entities with various structures. The natural rival of these interactions is the thermal agitation of molecules (kT), which aims to destroy the emerging structures. In this paper we present an experimental method to estimate the way of molecular self-assembly resulting from the simultaneous action of kT and intermolecular interactions. The method is based on the study of dipolar orientation effects induced by an applied electric field. As an experimental source of the information on these effects is temperature derivative of the static permittivity of tested liquid. That derivative is proportional to the liquid entropy change due to the ordering action of the electric field on the molecular dipoles. Here, we present the experimental results on temperature dependence of the static permittivity and increment of the orientation entropy of liquids where the self-association process realizes with two ways: dipolar couplings and hydrogen-bonds.
Wydawca
Czasopismo
Rocznik
Tom
Strony
517--532
Opis fizyczny
Bibliogr. 48 poz., wykr.
Twórcy
autor
- Instytut Fizyki Molekularnej PAN, ul. Mariana Smoluchowskiego 17, 60-179 Poznań
autor
- Instytut Fizyki Molekularnej PAN, ul. Mariana Smoluchowskiego 17, 60-179 Poznań
Bibliografia
- [1] L. Sobczyk, A. Koll, H. Ratajczak, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1963, 11, 85.
- [2] Z. Malarski, L. Sobczyk, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1966, 14, 789.
- [3] H. Ratajczak, L. Sobczyk, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1970, 18, 93.
- [4] L. Sobczyk, H. Kołodziej, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1970, 21, 699.
- [5] L. Sobczyk, Z. Pawełka, J. Chem. Soc. Faraday Trans. I, 1974, 70, 832.
- [6] J. Nowicka-Scheibe, A. Pawlukojc, L. Sobczyk, J. Mol. Structure, 2017, 1127, 590.
- [7] L. Sobczyk, D. Chudoba, P.M. Tolstoy, A. Filarowski, Molecules, 2016, 21, 1657.
- [8] G. Bator, M. Rok, W. Sawka-Dobrowolska, L. Sobczyk, M. Zamponi, A. Pawlukojc, Chem. Phys., 2015, 459, 148.
- [9] C.J.F. Bottcher, P. Bordewijk, Theory of Electric Polarization: Dielectric in Time-Dependent Fields, Vol. 2, Elsevier, Amsterdam 1992.
- [10] J.G. Kirkwood, J. Chem. Phys. 1939, 7, 911.
- [11] U. Kaatze, V. Uhlendorf, Z. Phys. Chem. N. F., 1981, 126, 151.
- [12] H. Frohlich, Theory of Dielectrics, 2nd ed., Clarendon Press, Oxford 1958.
- [13] R. Becker, Electromagnetic Field and Interactions, Blackie and Son, London 1964.
- [14] L.D. Landau, E. . Lifshitz, L. . Pitaevskii, Electrodynamics of Continuous Media, 2nd ed., Pergamon Press, Oxford 1984.
- [15] B.K.P. Scaife, Principles of Dielectrics, Clarendon Press, Oxford 1998.
- [16] S.W. Jacob, J.C. De La Torre, Dimethyl Sulfoxide (DMSO) in Trauma and Disease.; CRC Press: Boca Raton 2015.
- [17] J. Świergiel, I. Płowaś, J. Jadżyn, Ind. Eng. Chem. Res., 2015, 54, 2108.
- [18] I. Płowaś, J. Świergiel, J. Jadżyn, J. Chem. Eng. Data, 2013, 58, 1741.
- [19] J. Świergiel, J. Jadżyn, Int. J. Thermophys., 2012, 33, 783.
- [20] J. Jadżyn, J. Świergiel, J. Chem. Eng. Data, 2011, 56, 4715.
- [21] J. Świergiel, J. Jadżyn, J. Chem. Eng. Data, 2012, 57, 2271.
- [22] G. Moumouzias, G. Ritzoulis, J. Chem. Eng. Data, 1992, 37, 482.
- [23] J. Barthel, R. Neueder, H. Roch, J. Chem. Eng. Data, 2000, 45, 1007.
- [24] M.C. Grande, J.A. Julia, M. Garcia, C.M. Marschoff, J. Chem. Thermodynamics, 2007, 39, 1049.
- [25] M. Klajmon, K. Řehak, P. Moravek, M. Matoušova, J. Chem. Eng. Data, 2015, 60, 1362.
- [26] S. Singh, V.K. Rattan, S. Kapoor, R. Kumar, A. Rampal, J. Chem. Eng. Data, 2005, 50, 288.
- [27] H. Vogel, A. Weiss, Ber. Bunsenges. Phys. Chem., 1981, 85, 539.
- [28] J. Jadżyn, J. Świergiel, J. Phys. Chem. B, 2011, 115, 6623.
- [29] W. Dannhauser, A.F. Flueckinger, J. Phys. Chem., 1964, 68, 1814.
- [30] J. Jadżyn, G. Czechowski, C. Legrand, R. Douali, Phys. Rev. E, 2003, 67, 041705.
- [31] S. Paez, M. Confreras, J. Chem. Eng. Data, 1989, 34, 455.
- [32] J. Jadżyn, W. Łabno, Chem. Phys. Lett., 1980, 73, 307.
- [33] J. Jadżyn, J. Świergiel, I. Płowaś, R. Dąbrowski, U. Sokołowska, Ind. Eng. Chem. Res., 2013, 52, 4109.
- [34] J. Świergiel, J. Jadżyn, J. Chem. Eng. Data, 2009, 54, 2296.
- [35] J. Świergiel, J. Jadżyn, Phys. Chem. Chem. Phys., 2011, 13, 3911.
- [36] G. Akerlof, J. Am. Chem. Soc., 1932, 54, 4125.
- [37] D.W. Davidson, R.H. Cole, J. Chem. Phys., 1951, 19, 1484.
- [38] J. Świergiel, J. Jadżyn, Phys. Chem. Chem. Phys., 2017, 19, 10062.
- [39] O.V. Grineva, V.I. Zhuravlev, J. Chem. Eng. Data, 1996, 41, 604.
- [40] S. Nallani, S. Boodida, S.J. Tangeda, J. Chem. Eng. Data, 2007, 52, 405.
- [41] P.J. Victor, D.K. Hazra, J. Chem. Eng. Data, 2002, 47, 79.
- [42] B. Jović, A. Nikolić, B. Kordić, J. Mol. Liq., 2014, 191, 10.
- [43] P.G. Sears, W.C. O’Brien, J. Chem. Eng. Data, 1968, 13, 112.
- [44] A.U. Burman, K.H. U. Strom, J. Chem. Eng. Data, 2008, 53, 2307.
- [45] E. Jungermann, N.O.V. Sonntag, Glycerine: A Key Cosmetic Ingredient, Marcel Dekker, New York 1991.
- [46] J. Ortega, J. Chem. Eng. Data, 1982, 27, 312.
- [47] O.V. Grineva, V.I. Zhuravlev, J. Chem. Eng. Data, 1996, 41, 604.
- [48] A. Estrada-Baltazar, A. De Leon-Rodriguez, K.R. Hall, M. Ramos-Estrada, G.A. Iglesias-Silva, J. Chem. Eng. Data, 2003, 48, 1425.
Uwagi
Praca dedykowana Profesorowi Lucjanowi Sobczykowi z okazji 90. rocznicy urodzin
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c9be6eb-cf5a-434b-8323-6163b208a397