PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Electrical Properties and Electromagnetic Shielding Effectiveness of Polypyrrole Coated Cotton Yarns

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie właściwości elektrycznych i efektywności ekranowania pola elektromagnetycznego przędz bawełnianych pokrytych polipyrolem
Języki publikacji
EN
Abstrakty
EN
Polypyrrole (PPy) coated cotton yarns were prepared by the vapour phase polymerisation technique at various initiator concentrations. Iron (III) chloride (FeCl3) was used as the initiator at four different concentrations (0.2, 0.4, 0.6 & 0.8 mol/l) respectively. In this work, the effects of initiator concentration on the tensile, electrical and morphological properties of the cotton yarns were investigated. PPy coated cotton yarns were woven on a handloom for the investigation of electromagnetic shielding effectiveness. The fabric samples prepared were evaluated in terms of shielding behavior. Scanning electron microscopy (SEM) analysis showed that the yarn treated with 0.4 mol/l initiator concentration gave the most uniform PPy layer and highest shielding value. The existence of PPy was proved by using Fourier transform infrared spectroscopy (FTIR) analysis.
PL
Bawełniane przędze pokryte polipyrolem (PPy) wytworzono techniką polimeryzacji w fazie gazowej w różnych stężeniach inicjatora. Jako inicjator zastosowano FeCl3 o czterech różnych stężeniach (0,2; 0,4; 0,6 i 0,8 mol/l). Zbadano wpływ stężenia inicjatora na rozciąganie, oraz elektryczne i morfologiczne właściwości przędz bawełnianych. W celu zbadania efektywności ekranowania pola elektromagnetycznego przędze bawełniane powlekane PPy były tkane ręcznie na krośnie. Przygotowane próbki tkanin oceniano pod względem właściwości ekranujących. Analiza SEM wykazała, że z przędzy z dodatkiem inicjatora o stężeniu 0,4 mol/l uzyskano najbardziej jednolitą warstwę PPy i najwyższą wartość ekranowania. Obecność PPy potwierdzono za pomocą spektroskopii w podczerwieni z transformacją Fouriera (FTIR).
Rocznik
Strony
32--37
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Textile Education, Faculty of Technical Educationn, University of Marmara, Istanbul, Turkey
  • atillag@marmara.edu.tr
autor
  • Department of Textile Education, Faculty of Technical Educationn, University of Marmara, Istanbul, Turkey
autor
  • Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
Bibliografia
  • 1. Hakansson E, Amiet A, Kaynak A. Electromagnetic shielding properties of polypyrrole/polyester composites in the 1-18 GHz frequency range. Synthetic metals 2006; 156(14-15): 917-925.
  • 2. Hakansson E, Amiet A, Nahavandi S. et al. Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. European polymer Journal 2007; 43(1): 205-213.
  • 3. Hong YK, Lee CY, Jeong CK. et al. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag* 1. Current Applied Physics 2001; 1(6): 439-442.
  • 4. Feller JF, Grohens Y. Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion. Sensors and Actuators B: Chemical 2004; 97(2-3): 231-242.
  • 5. Li Y, Cheng XY, Leung MY. et al. A flexible strain sensor from polypyrrolecoated fabrics. Synthetic metals 2005; 155(1): 89-94.
  • 6. Ates M, Sarac AS. Conducting polymer coated carbon surfaces and biosensor applications. Progress in Organic Coatings 2009; 66(4): 337-358.
  • 7. Textor T, Mahltig B. A sol-gel based surface treatment for preparation of water repellent antistatic textiles. Applied Surface Science 2010; 256(6): 1668-1674.
  • 8. Kessler L, Fisher WK. A study of the electrostatic behavior of carpets con- taining conductive yarns. Journal of Electrostatics 1997; 39(4): 253-275.
  • 9. Marozas V, Daukantas S, Lukosevicius A. A comparison of conductive textilebased and silver/silver-chloride gel electrodes in exercise electrocardiogram recordings. Journal of Electrocardiology 2011; 44(2): 57-58.
  • 10. Yuan C, Hou L, Li D. et al. Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors. Electrochimica Acta 2011; 56;
  • 11. Khumpuang S, Miyake K, Itoh T.Characterization of a SWNT-reinforced conductive polymer and patterning technique for applications of electronic textile. Sensors and Actuators A: Physical 2011; 169: 378-382.
  • 12. Krucińska I, Urbaniak-Domagala W, Skoneczna M. et al. Possibility of the Application of Low Temperature Plasma for the Deposition of a Polypyrrole Insulating Layer to Construct a Textile-Based Organic Field Effect Transistor. Fibres & Textiles in Eastern Europe 2011; 19, 1(84): 78-83.
  • 13. Babu KF, Senthilkumar R, Noel M. et al. Polypyrrole microstructure deposited by chemical and electrochemical methods on cotton fabrics.Synthetic metals 2009; 159(13): 1353-1358.
  • 14. Cucchi I, Boschi A, Arosio C. et al. Biobased conductive composites: Preparation and properties of polypyrrole (PPy)- coated silk fabrics. Synthetic metals 2009; 159(3-4): 246-253.
  • 15. Al-Ghamdi AA, El-Tantawy F. New Electromagnetic Wave Shielding Effectiveness at Microwave Frequency of Polyvinyl Chloride Reinforced Graphite/ Cupper Nanoparticles. Composites Part A: Applied Science and Manufacturing, 2010.
  • 16. Chen HC, Lee KC, Lin JH. Electromagnetic and electrostatic shielding properties of co-weaving-knitting fabrics reinforced composites. Composites Part A: Applied Science and Manufacturing 2004; 35(11): 1249-1256.
  • 17. Perumalraj R, Dasaradan BS. Electromagnetic Shielding Effectiveness of Doubled Copper Cotton Yarn Woven Materials. Fibres & Textiles in Eastern Europe 2010; 18, 3(80): 74-80.
  • 18. Brzeziński S, Rybicki T, Karbownik I. et al. Textile Multi-layer Systems for Protection Against Electromagnetic Radiation. Fibres & Textiles in Eastern Europe 2009; 17, 2(73): 66-71.
  • 19. Brzeziński T, Rybicki T, Malinowska G. et al. Effectiveness of Shielding Electromagnetic Radiation, and Assumptions for Designing the Multi-layer Structures of Textile Shielding Materials. Fibres & Textiles in Eastern Europe 2009; 17, 1(72): 60-65.
  • 20. Kim MS, Kim HK, Byun SW. et al., PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic metals 2002; 126(2-3): 233- 239.
  • 21. Dall’Acqua L, Tonin C, Varesano A. et al. Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic metals 2006; 156(5-6): 379-386.
  • 22. Najar SS, Kaynak A, Foitzik RC. Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synthetic metals 2007; 157(1): 1-4.
  • 23. Im JS, Kim JG, Lee SH. et al. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 364(1-3): 151-157.
  • 24. Stejskal J, Trchová M, Kováová J. et al. Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers 2008; 62(2): 181-186.
  • 25. TS EN ISO 2062: Textiles-Yarns from packages-Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester, 2010.
  • 26. Kaynak A, Najar SS, Foitzik RC. Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synthetic metals 2008;158(1-2): 1-5.
  • 27. ASTM D257-07: Standard Test Methods for DC Resistance or Conductance of Insulating Materials, 2007.
  • 28. ASTM D4935-10: Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, 2010.
  • 29. Brzeziński S, Rybicki T, Karbownik I. et al. Usability of a Modified Method for Testing Emissivity to Assess the Real Shielding Properties of Textiles. Fibres & Textiles in Eastern Europe 2010; 18, 5(82): 76-80.
  • 30. Kaynak A, Wang L, Hurren C. et al. Characterization of conductive polypyrrole coated wool yarns. Fibers and Polymers 2002; 3(1): 24-30.
  • 31. Kaynak A, Beltran R. Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polymer international 2003; 52(6): 1021-1026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c9af923-29d8-4494-b3da-fc050b8138de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.