PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arrheniusan activation energy of separation for different parameters regulating the process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Arrhenius model, that relates the activation energy with the kinetic constant and process temperature, was applied for flotation as a separation process, and next was extended to other incentive parameters such as the frother concentration, NaCl content and hydrophobicity. It was shown that determination of the activation energy caused by other incentive parameters (i.e. particle size, surface potential) was also possible. The units of the activation energy depend on the type of the separation process and incentive parameter. For contact angle regulating flotation the activation energy unit is mJ/m2, while for the frother concentration is J. It is known that instead in joules, the activation energy can also be expressed in J/mol and in kT or RT units, where k is the Boltzmann constant, R gas constant and T is absolute temperature in kelvins. Even though different formulas of the specific Gibbs potential were used for calculation of activation energy caused by various incentive parameters, there was generally a good agreement between the extend of changes of the first order kinetic constants of the process and activation energy value. It was found that for flotation of copper-bearing carbonaceous shale the activation energy was equal to 1.1 kT for NaCl as the incentive parameter, 3.0 kT for temperature and 32.7 kT for butyl diethylglycol ether used as a flotation frother. For methylated quartz the hydrophobicity-induced activation energy was 42 mJ/m2 for contact angle as the incentive parameter.
Rocznik
Strony
1152--1158
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • ARRHENIUS, S.A., 1889. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte, Z. Phys. Chem., 4, 96–116.
  • CHAPMAN, S., COWLING, T.G., 1991. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (3rd Edition). Cambridge University Press.
  • CHIPFUNHU, D., ZANIN, M., GRANO, S., 2012. Flotation behaviour of fine particles with respect to contact angle, Chemical Engineering Research and Design, 90, 26–32.
  • CRAING, D.B., CHASE, L.N., 2012, Arrhenius Plot for a Reaction Catalyzed by a Single Molecule of β-Galactosidase, Anal. Chem. 84, 4, 2044-2047.
  • DRZYMALA, J., KOWALCZUK, B.P., 2018. Classification of flotation frothers. Minerals 8, 53, 1-24.
  • DRZYMALA, J., LEKKI, J., LASKOWSKI, J., 1979. Surface dissociation constant for solids oxide/aqueous solution system. Colloid and Polymer Sci., 257, 768-772.
  • EVANS, M.G., POLANYI M., 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 3, 875–894.
  • FENG, Q, WEN, S., WANG, Y., ZHAO, W., DENG, J., 2015. Investigation of leaching kinetics of cerussite in sodium hydroxide solutions, Physicochem. Probl. Miner. Process. 51(2), 491−500.
  • FUERSTENAU, D.W., RAGHAVAN, S., 2007. Some aspects of flotation thermodynamics. In: Froth flotation. A century of innovation, M.C. Fuerstenau, G. Jameson, R-H. Yoon Eds, SME, Littletonm USA.
  • KURKIEWICZ, S., RATAJCZAK, T., 2017. Flotometryczna hydrofobowosc lupkow miedzionosnych w obecnosci NaCl, in: Lupek miedzionosny III, Kowalczuk P.B., Drzymala J. (Eds), WGGG PWr, Wroclaw, 118-128, http://www.minproc. pwr.wroc.pl/lupek/lupek1711.pdf.
  • LASKOWSKI, J.S., 1986. The relationship between floatability and hydrophobicity. In P. Somasundaran (ed.), Advances in Mineral Processing, SME, Littleton, USA, 189-208.
  • LASKOWSKI, J.S., 1989. Thermodynamic and Kinetic Flotation Criteria, Mineral Processing and Extractive Metallurgy Review, 5, 25-41.
  • LASKOWSKI and Yoon, R.H., 1991. Energy barrier in particle-to-bubble attachment and its effect of flotation kinetics, Proc. 17th Int. Mineral Processing Congress, Dresden, 2, 237-249.
  • NOWAK, J., DRZYMALA, J., 2017. Flotacja lupka miedzionosnego w obecnosci spieniacza, zbieracza oraz depresora w postaci dekstryny, in: Lupek miedzionosny III, Kowalczuk P.B., Drzymala J. (Eds), WGGG PWr, Wroclaw, 118128, http://www.minproc.pwr.wroc.pl/lupek/lupek1713.pdf.
  • OZDEMIR, O., 2013. Specific ion effect of chloride salts on collectorless flotation of coal, Physicochem. Probl. Miner. Process. 49(2), 511−524.
  • PATNIAK A.S., GOLDFARB, J.L., 2016. Continuous activation energy representation of the Arrhenius equation for the pyrolysis of cellulosic materials: feed corn stover and cocoa shell biomass, Cellulose Chem. Technol., 50(2), 311-320.
  • PAULSON O., PUGH R.J., 1996, Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes, Langmuir, 12, 4808-4813.
  • PETROU, A., ROULIA, M., TAMPOURIS, K., 2002, The use of the Arrhenius equation in the study of deterioration and of cooking of foods some scientific and pedagogic aspects, Chemistry Education: Research and Practice in Europe, 3(1), 87-97.
  • POLANYI, J.C., 1987. Some concepts in reaction dynamics. Science. 236 (4802), 680–690.
  • PUGH, R.J., WEISSENBORN, P., PAULSON, O., 1997. Flotation in inorganic electrolytes: the relationship between recovery of hydrophobic particles, surface tension, bubble coalescence and gas solubility. Int. J. Miner. Process. 51(1-4), 125-138.
  • RATAJCZAK, T., 2017, Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents, E3S Web of Conferences 18, 01028 (2017).
  • REDLICKI, M., DRZYMALA, J., Wplyw temperatury na flotacje lupka miedzionosnego, Lupek miedzionosny II, KOWALCZUK P.B., DRZYMALA J. (Eds.), WGGG PWr, Wroclaw, 2016, 132-135.
  • YU, M., JIANG, X., MEI, G., CHEN, X., 2018. Leaching kinetic study of Y and Eu from waste phosphors using hydrochloric acid solution containing hydrogen peroxide, Physicochem. Probl. Miner. Process., 54(2), 238-248.
  • ZHANG, H., 2015. Effect of electrolyte addition on flotation response of coal, Physicochem. Probl. Miner. Process. 51(1), 257−267.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c98984d-9397-41fc-93c1-6a6ed8a93681
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.