PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on a novel hydroxamic acid as the collector of rhodochrosite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel collector, tert-butyl benzohydroxamic acid (TBHA), was first introduced in rhodochrosite flotation. The performance of TBHA was investigated by the density functional theory (DFT) calculation along with the micro flotation test, zeta potential determination and XPS analysis, compared with benzohydroxamic acid (BHA). TBHA has stronger affinity to the mineral than BHA in terms of frontier molecular orbital, atomic net charge and bond population. The substitution of tert-butyl group on the benzene ring improves the affinity of the hydroxamic acid to the mineral. TBHA exhibits excellent collecting ability to rhodochrosite with a recovery of about 99% at a concentration of 3.89×10-4 mol/dm3 and pH 6.5. The hydroxamic acid molecules are adhered on mineral surfaces by chemical adsorption, resulting in negative shifts for the zeta potential of rhodochrosite with the presence of the collector. Chemical adsorption can be also confirmed from XPS analyses that the atomic concentration ratios of C and O to Mn on the treated mineral surfaces were increased and the binding energy of Mn3s was decreased. The experimental data achieve excellent agreement with the computational analyses.
Słowa kluczowe
Rocznik
Strony
428--439
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
  • Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
autor
  • College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
  • Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
autor
  • College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
  • Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
autor
  • College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
  • Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
Bibliografia
  • ALI, O.Y., FRIDGEN, T.D., 2011. Structures of electrosprayed Pb(Uracil-H)+ complexes by infrared multiple photon dissociation spectroscopy. Int. J. Mass. Spectrom., 2-3, 167-174.
  • ARJUNAN, V., DEVI, L., SUBBALAKSHMI, R., RANI, T., MOHAN, S., 2014. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone. Spectrochim. Acta A, 130, 164-177.
  • ARORA, R., ISSAR, U., KAKKAR, R., 2017. Theoretical study of the molecular structure and intramolecular proton transfer in benzohydroxamic acid. Comput. Theor. Chem., 1105, 18-26.
  • AYERS, P.W., PARR, R.G., 2000. Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J. Am. Chem. Soc., 122, 2010-2018.
  • BAG, B., DAS, B., MISHRA, B.K., 2011. Geometrical optimization of xanthate collectors with copper ions and their response to flotation. Miner. Eng., 24, 760-765.
  • EL-GAMMAL, O.A., RAKHA, T.H., METWALLY, H.M., ABU El-REASH, G.M., 2014. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes. Spectrochim. Acta A, 127, 144-156.
  • FARKAS, E., BETKA, D. CSAPO, E., BUGLYO, P., HAASE, W., SANNA, D., 2007. Synthesis and characterization of Cu2+, Ni2+ and Zn2+ binding capability of some amino- and imidazole hydroxamic acids: Effects of substitution of side chain amino-N for imidazole-N or hydroxamic-N-CH3 on metal complexation. Polyhedron, 26, 543-554.
  • FRISCH, M.J., TRUCKS, G.W., SCHLEGEL, H.B., SCUSERIA, G.E., ROBB, M.A., CHEESEMAN, J.R., SCALMANI, G., BARONE, V., MENNUCCI, B., PETERSSON, G.A., NAKATSUJI, H., CARICATO, M., LI, X., HRATCHIAN, H.P., IZMAYLOV, A.F., BLOINO, J., ZHENG, G., SONNENBERG, J.L., HADA, M., EHARA, M., TOYOTA, K., FUKUDA, R., HASEGAWA, J., ISHIDA, M., NAKAJIMA, T., HONDA, Y., KITAO, O., NAKAI, H., VREVEN, T., MONTGOMERY JR, J.A. , PERALTA, J.E., OGLIARO, F., BEARPARK, M., HEYD, J.J., BROTHERS, E., KUDIN, K.N., STAROVEROV, V.N., KOBAYASHI, R., NORMAND, J., RAGHAVACHARI, K., RENDELL, A., BURANT, J.C., IYENGAR, S.S., TOMASI, J., COSSI, M., REGA, N., MILLAM, J.M., KLENE, M., KNOX, J.E., CROSS, J.B., BAKKEN, V., ADAMO, C., JARAMILLO, J., GOMPERTS, R., STRATMANN, R.E., YAZYEV, O., AUSTIN, A.J., CAMMI, R., POMELLI, C., OCHTERSKI, J.W., MARTIN, R.L, MOROKUMA, K., ZAKRZEWSKI, V.G., VOTH, G.A., SALVADOR, P., DANNENBERG, J.J., DAPPRICH, S., DANIELS, A.D., FARKAS, O., FORESMAN, J.B., ORTIZ, J.V., CIOSLOWSKI, J., FOX, D.J., 2009. Gaussian Inc, Wallingford CT.
  • FUERSTENAU, D.W., SHIBATA, J., 1999. On using electrokinetics to interpret the flotation and interfacial behavior of manganese dioxide. Int. J. Miner. Process., 57(3), 205-217.
  • FUKUI, K., 1982. Role of Frontier Orbitals in Chemical Reactions. Science, 4574, 747-754.
  • GECE, G., BILGIC, S., 2010. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corros. Sci., 10, 3304-3308.
  • GAO, Y.S., GAO, Z.Y., SUN, W., HU, Y.H., 2016a. Selective flotation of scheelite from calcite: A novel reagent scheme. International Journal of Mineral Processing, 154, 10-15.
  • GAO, Z.Y., GAO, Y.S., ZHU, Y.Y., HU, Y.H., SUN, W., 2016b. Selective flotation of calcite from fluorite: a novel reagent schedule. Minerals, 6(4), 114.
  • GRIFFITH, D.M., SZOCS, B., KEOGH, T. SUPONITSKY, K.Y., FARKAS, E., BUGLYO, P., MARMION, C.J., 2011. Suberoylanilide hydroxamic acid, a potent histone deacetylase inhibitor; its X-ray crystal structure and solid state and solution studies of its Zn(II), Ni(II), Cu(II) and Fe(III) complexes. J. Inorg. Biochem, 6, 763-769.
  • HAN, H.S., HU, Y.H., SUN, W., LI, X.D., CAO, C.G., LIU, R.Q., YUE, T., MENG, X.S., GUO, Y.Z., WANG, J.J., GAO, Z.Y., CHEN, P., HUANG, W.S., LIU, J., XIE, J.W., CHEN, Y.L., 2017. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice. Int. J. Miner. Process., 159, 22-29.
  • JORDENS, A., MARION, C., GRAMMATIKOPOULOS, T., HART, B., WATERS, K.E., 2016. Beneficiation of the Nechalacho rare earth deposit: Flotation response using benzohydroxamic acid. Miner. Eng., 99, 158-169.
  • KAKKAR, R., GROVER, R., GAHLOT, P., 2006. Density functional study of the properties of isomeric aminophenylhydroxamic acids and their copper (II) complexes. Polyhedron, 3, 759-766.
  • LIU, G.Y., ZENG, H.B., LU, Q.Y., ZHONG, H., CHOI, P., XU, Z.H., 2012. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure–reactivity relations. Colloid. Surface. A, 409, 1-9.
  • LIU, G.Y., ZHONG, H., DAI, T.G., 2006. The separation of Cu/Fe sulfide minerals at slightly alkaline conditions by using ethoxycarbonyl thionocarbamates as collectors: Theory and practice. Miner. Eng., 13, 1380-1384.
  • NAGARAJ, D.R., FARINATO, R.S., 2016. Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges. Miner. Eng., 96-97, 2-14.
  • PARR, R.G., YANG, W., 1984. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 106, 4049-4050.
  • SOUSA, R., FUTURO, A., PIRES, C.S., LEITE, M.M., 2017. Froth flotation of Aljustrel sulphide complex ore. Physicochem. Probl. Miner. Process., 2, 758-769.
  • WIBERG, K.B., 1968. Application of the Pople-Santry-Segal CNDO Method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron, 24, 1083-1096.
  • Wu X.Q., Zhu J.G., 2006. Selective flotation of cassiterite with benzohydroxamic acid. Miner. Eng., 19, 1410-1417.
  • YANG, H., FAIRBRIDGE, C., Ring, Z., 2003. Adsorption of dibenzothiophene derivatives over a MoS2 nanoclusters a density functional theory study of structure-reactivity relations. Energ. Fuel., 17, 387-398.
  • ZHAO, G., ZHONG, H., QIU X.Y., WANG, S., GAO, Y.D., DAI, Z.L., HUANG, J.P., LIU, G.Y., 2013. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation. Miner. Eng., 49, 54-60.
  • ZHOU, F., CHEN, T., YAN, C.J., LIANG, H., CHEN, T., LI, D., WANG, Q.Y., 2015b. The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid. Colloid. Surface. A, 466, 1-9.
  • ZHOU, F., YAN, C.J., WABG, H.Q., SUN, Q., WANG, Q.Y., ALSHAMERI, A., 2015a. Flotation behavior of four C18 hydroxamic acids as collectors of rhodochrosite. Miner. Eng., 78, 15-20.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c97ae12-ed0c-4eee-a06c-a50f2b7bae23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.