PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anaerobic Co-Digestion of Sewage Sludge and Waste in High Solid State

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of thermal pre-treatment (TP) on the physical characteristics and co-digestion of a mixture of food waste and sludge was investigated. The food waste (FW) to sewage sludge (SS) ratio used in this research is 1:2 (VS-based) to form a final concentration of 11.20%. The inoculum to substrate ratio was set at 1:1 (volumebased). Undoubtedly, the results show that TP has changed the physical characteristics of the food waste to sewage sludge mixture. The results show that the pretreatment increased the biogas production from 4385 ml for the untreated reactor to 5685 for the reactor R2(140) at 140 °C and the improvement in biogas production reaches 29.65% in the reactor R2(140) and the removal of volatile solids was 58.90%. Therefore, after the biomethane potential test, the temperature of 140 °C was found to be optimal in the production of biogas. The optimal condition is to use a mixture of pre-treated SS at the temperature of 140 °C and untreated FW, so TP is recommended to be used in anaerobic digestion of the mixture of food waste and sewage sludge.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
  • Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519 Ismailia, El-Zakazik Rd, Shaibet an Nakareyah, Zagazig 2, Ash Sharqia Governorate, Egypt
  • Environmental Engineering Department, Faculty of Engineering at Shubra, Benha University, Fareed Nada Street, Benha, Qalubiya Governorate, Egypt
  • Environmental Engineering Department, Faculty of Engineering at Shubra, Benha University, Fareed Nada Street, Benha, Qalubiya Governorate, Egypt
Bibliografia
  • 1. Al Seadi, T., Owen, N., Hellström, H., Kang, H. 2013. Source separation of MSW (First). IEA Bioenergy. https://www.nswai.org/docs/Source%20separation%20of%20MSW.pdf
  • 2. Amiri, L., Abdoli, M. A., Gitipour, S., Madadian, E. 2016. The effects of co-substrate and thermal pretreatment on anaerobic digestion performance. Http://Dx.Doi.Org/10.1080/09593330.2016.12606 43, 38(18), 2352–2361.
  • 3. APHA A., WEF. 2005. Standard methods for the examination of water and wastewater. In American Public Works Association (21st ed.). APHA-AWWA-WEF.
  • 4. Appels L., Baeyens J., Degrève J., Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.
  • 5. Ariunbaatar J., Panico A., Esposito G., Pirozzi F., Lens P.N.L. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156.
  • 6. Bougrier C., Albasi C., Delgenès J.P., Carrère H. 2006. Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing: Process Intensification, 45(8), 711–718.
  • 7. Bougrier C., Delgenès J.P., Carrère H. 2007. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochemical Engineering Journal, 34(1), 20–27.
  • 8. Bougrier C., Delgenès J.P., Carrère H. 2008. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal, 139(2), 236–244.
  • 9. Buffiere P., Loisel D., Bernet N., Delgenes J.P. 2006. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Science and Technology, 53(8), 233–241.
  • 10. Cabbai V., Ballico M., Aneggi E., Goi D. 2013. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33(7), 1626–1632.
  • 11. Campuzano R., González-Martínez S. 2016. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12.
  • 12. Caroca E., Serrano A., Borja R., Jiménez A., Carvajal A., Braga A.F.M., Rodriguez-Gutierrez, G., Fermoso, F. G. 2021. Influence of phenols and furans released during thermal pretreatment of olive mill solid waste on its anaerobic digestion. Waste Management, 120, 202–208.
  • 13. Carrère H., Bougrier C., Castets D., Delgenès J.P. 2008. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment, 43(13), 1551–1555. https://doi.org/10.1080/10934520802293735
  • 14. Carrère H., Dumas C., Battimelli A., Batstone D.J., Delgenès J.P., Steyer J.P., Ferrer I. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183(1–3), 1–15.
  • 15. Chen Y., Cheng J.J., Creamer K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064.
  • 16. Deepanraj B., Sivasubramanian V., Jayaraj S. 2017. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42(42), 26522–26528.
  • 17. Dwyer J., Starrenburg D., Tait S., Barr K., Batstone D.J., Lant P. 2008. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research, 42(18), 4699–4709.
  • 18. Elksibi I., Haddar W., ben Ticha M., Gharbi R., Mhenni M.F. 2014. Development and optimisation of a non-conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM). Food Chemistry, 161, 345–352.
  • 19. Elliott A., Mahmood T. 2012. Comparison of Mechanical Pretreatment Methods for the Enhancement of Anaerobic Digestion of Pulp and Paper Waste Activated Sludge. Water Environment Research, 84(6), 497–505.
  • 20. FAO. 2014. Food and Nutrition in Numbers. https://www.fao.org/publications/card/en/c/9f31999d-be2d-4f20-a645-a849dd84a03e/
  • 21. Gert-Jan M., Eberhard H. 2007. Ammonia emissions in agriculture. In Ammonia emissions in agriculture. Wageningen Academic Publishers.
  • 22. Guo J., Wang W., Liu X., Lian S., Zheng L. 2014. Effects of thermal pre-treatment on anaerobic codigestion of municipal biowastes at high organic loading rate. Chemosphere, 101, 66–70.
  • 23. Hadj B.E., Astals S., Galí A., Mace S., Mata-Áivarez J. 2009. Ammonia influence in anaerobic digestion of OFMSW. Water Science and Technology, 59(6), 1153–1158.
  • 24. Haider M.R., Zeshan Yousaf S., Malik R.N., Visvanathan C. 2015. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresource Technology, 190, 451–457.
  • 25. Hendriks A.T.W.M., Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.
  • 26. Heo N.H., Park S.C., Lee J.S., Kang H., Park D.H. 2003. Single-Stage Anaerobic Codigestion for Mixture Wastes of Simulated Korean Food Waste and Waste Activated Sludge. Biotechnology for Fuels and Chemicals, 567–579.
  • 27. Hoornweg D., Bhada-Tata, Perinaz. 2012. What a Waste : A Global Review of Solid Waste Management. https://openknowledge.worldbank.org/handle/10986/17388
  • 28. Khalid A., Arshad M., Anjum M., Mahmood T., Dawson L. 2011. The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744.
  • 29. Kim H.W., Han S.K., Shin H. S. 2003. The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Management and Research, 21(6), 515–526.
  • 30. Kim M., Chowdhury M.M.I., Nakhla G., Keleman M. 2017. Synergism of co-digestion of food wastes with municipal wastewater treatment biosolids. Waste Management, 61, 473–483.
  • 31. Kwarciak-Kozłowska A. 2019. Co-composting of sewage sludge and wetland plant material from a constructed wetland treating domestic wastewater. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, 337–360.
  • 32. la Cour Jansen J., Gruvberger C., Hanner N., Aspegren H., Avärd Å. 2004. Digestion of sludge and organic waste in the sustainability concept for Malmö, Sweden. Water Science and Technology, 49(10), 163–169.
  • 33. Liu J., Yin J., He X., Chen T., Shen D. 2021. Optimizing food waste hydrothermal parameters to reduce Maillard reaction and increase volatile fatty acid production. Journal of Environmental Sciences, 103, 43–49.
  • 34. Liu J., Zhao M., Lv C., Yue P. 2020. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery. Environmental Research, 189, 109856.
  • 35. Marcelo C.A., Yao D.W., Tony R., Pankaj B Patharea, Rasaq O. Lamidia. 2017. Biogas from anaerobic co-digestion of food waste and primary sludge for cogeneration of power and heat. Energy Procedia, 142, 70–76.
  • 36. Mata-Alvarez J., Dosta J., Macé S., Astals S. 2011. Codigestion of solid wastes: A review of its uses and perspectives including modeling. http://dx.doi.org/10.3109/07388551.2010.525496, 31(2), 99–111.
  • 37. Mata-Alvarez J., Dosta J., Romero-Güiza M.S., Fonoll X., Peces M., Astals S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.
  • 38. Meegoda J.N., Li B., Patel K., Wang L.B. 2018. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10), 2224.
  • 39. Mehariya S., Patel A.K., Obulisamy P.K., Punniyakotti E., Wong J.W.C. 2018. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 265, 519–531.
  • 40. Mottet A., Steyer J.P., Déléris S., Vedrenne F., Chauzy J., Carrère H. 2009. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochemical Engineering Journal, 46(2), 169–175.
  • 41. Naran E., Toor U.A., Kim D.J. 2016. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. International Biodeterioration & Biodegradation, 113, 17–21.
  • 42. Nazari L., Yuan Z., Santoro D., Sarathy S., Ho D., Batstone D., Xu C.C., Ray M.B. 2017. Lowtemperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water Research, 113, 111–123.
  • 43. Nges I.A., Liu J. 2009. Effects of anaerobic pretreatment on the degradation of dewatered-sewage sludge. Renewable Energy, 34(7), 1795–1800.
  • 44. Pan Y., Zhi Z., Zhen G., Lu X., Bakonyi P., Li Y.Y., Zhao Y., Rajesh Banu J. 2019. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel, 253, 40–49.
  • 45. Park S., Kim M. 2015. Effect of ammonia on anaerobic degradation of amino acids. KSCE Journal of Civil Engineering, 20(1), 129–136.
  • 46. Park S., Han S.K., Song E., Kim H., Kim M., Lee W. 2020. Effect of hydrothermal pre-treatment on physical properties and co-digestion from food waste and sewage sludge mixture. Waste Management and Research, 38(5), 546–553.
  • 47. Park S., Lee H., Lee W., Kim M. 2015. Comparison methane production potential between granular and suspended sludge at varying ammonia concentration. KSCE Journal of Civil Engineering, 20(5), 1692–1700.
  • 48. Prabhu M.S., Mutnuri S. 2016. Anaerobic co-digestion of sewage sludge and food waste. Waste Management and Research, 34(4), 307–315.
  • 49. Silvestre G., Bonmatí A., Fernández B. 2015. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size. Waste Management, 43, 137–143.
  • 50. Sosnowski P., Klepacz-Smolka A., Kaczorek K., Ledakowicz S. 2008. Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes. Bioresource Technology, 99(13), 5731–5737.
  • 51. Suárez-Iglesias O., Urrea J.L., Oulego P., Collado S., Díaz M. 2017. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Science of The Total Environment, 584–585, 921–934.
  • 52. Taboada-Santos A., Braz G.H.R., Fernandez-Gonzalez N., Carballa M., Lema J.M. 2019. Thermal hydrolysis of sewage sludge partially removes organic micropollutants but does not enhance their anaerobic biotransformation. Science of The Total Environment, 690, 534–542.
  • 53. Torrijos M. 2016. State of Development of Biogas Production in Europe. Procedia Environmental Sciences, 35, 881–889.
  • 54. Wang N., Zheng T., Ma Y. 2020. New insights into the co-locating concept on synergistic co-digestion of sewage sludge and food waste towards energy self-sufficient in future WWTPs. Bioresource Technology Reports, 10, 100351.
  • 55. Wang P., Wang H., Qiu Y., Ren L., Jiang B. 2018. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresource Technology, 248, 29–36.
  • 56. Wang W., Hou H., Hu S., Gao X. 2010. Performance and stability improvements in anaerobic digestion of thermally hydrolyzed municipal biowaste by a biofilm system. Bioresource Technology, 101(6), 1715–1721.
  • 57. Westerholm M., Castillo M.D.P., Chan Andersson A., Jahre Nilsen P., Schnürer A. 2019. Effects of thermal hydrolytic pre-treatment on biogas process efficiency and microbial community structure in industrialand laboratory-scale digesters. Waste Management, 95, 150–160.
  • 58. Wilson C.A., Novak J.T. 2009. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Research, 43(18), 4489–4498.
  • 59. Xie S., Wickham R., Nghiem L.D. 2017. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191–197.
  • 60. Yang G., Fan M., Zhang G. 2014. Emerging contaminants in surface waters in China A short review. Environmental Research Letters, 9(7).
  • 61. Zhang M., Zhang Y., Li Z., Zhang C., Tan X., Liu X., Wan C., Yang X., Lee D.J. 2019. Anaerobic codigestion of food waste/excess sludge: substrates products transformation and role of NADH as an indicator. Journal of Environmental Management, 232, 197–206.
  • 62. Zhang P., Zeng G., Zhang G., Li Y., Zhang B., Fan M. 2008. Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process. Fuel Processing Technology, 89(4), 485–489.
  • 63. Zhang X., Chen J., Idossou V., Tyagi R.D., Li J., Wang H. 2018. Lipid accumulation from Trichosporon oleaginosus with co-fermentation of washed wastewater sludge and crude glycerol. Fuel, 226, 93–102.
  • 64. Zhen G., Lu X., Kobayashi T., Li Y.Y., Xu K., Zhao Y. 2015. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Applied Energy, 148, 78–86.
  • 65. Zhou Y., Takaoka M., Wang W., Liu X., Oshita K. 2013. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: A pilot scale study in China. Journal of Bioscience and Bioengineering, 116(1), 101–105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c8ed15b-cfa1-45e9-9b81-da5375055968
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.