Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Beyşehir Lake is the largest freshwater lake in the Mediterranean region of Turkey that is used for drinking and irrigation purposes. The aim of this paper is to examine the potential for data-driven methods to predict long-term lake levels. The surface water level variability was forecast using conventional machine learning models, including autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA). Based on the monthly water levels of Beyşehir Lake from 1992 to 2016, future water levels were predicted up to 24 months in advance. Water level predictions were obtained using conventional time series stochastic models, including autoregressive moving average, autoregressive integrated moving average, and seasonal autoregressive integrated moving average. Using historical records from the same period, prediction models for precipitation and evaporation were also developed. In order to assess the model’s accuracy, statistical performance metrics were applied. The results indicated that the seasonal autoregressive integrated moving average model outperformed all other models for lake level, precipitation, and evaporation prediction. The obtained results suggested the importance of incorporating the seasonality component for climate predictions in the region. The findings of this study demonstrated that simple stochastic models are effective in predicting the temporal evolution of hydrometeorological variables and fluctuations in lake water levels.
Wydawca
Czasopismo
Rocznik
Tom
Strony
158--170
Opis fizyczny
Bibliogr. 39 poz., fot., mapy, rys., tab., wykr.
Twórcy
autor
- Fatih Sultan Mehmet Vakıf University, Faculty of Engineering, Department of Civil Engineering, Beyoglu, 34445, Istanbul, Turkey
autor
- Yıldız Technical University, Faculty of Civil Engineering, Department of Civil Engineering, Esenler, 34210, Istanbul, Turkey
autor
- Istanbul Technical University, Faculty of Civil Engineering, Department of Civil Engineering, Maslak, 34469, Istanbul, Turkey
autor
- Stevens Institute of Technology, Department of Civil, Environmental, and Ocean Engineering, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
autor
- Yıldız Technical University, Faculty of Civil Engineering, Department of Civil Engineering, Esenler, 34210, Istanbul, Turkey
Bibliografia
- Aktumsek, A. and Gezgin, S. (2011) “Seasonal variations of metal concentrations in muscle tissue of tench (Tinca tinca), water and sediment in Beysehir Lake (Turkey),” Environmental Technology, 32(13), pp. 1479–1485. Available at: https://doi.org/10.1080/09593330.2010.540717.
- Asadollahfardi, G., Rahbar, M. and Fatemiaghda, M. (2012) “Application of time series models to predict water quality of upstream and downstream of Latian dam in Iran,” Universal Journal of Environmental Research and Technology, 2(1), pp. 26–35. Available at: http://www.environmentaljournal.org/2-1/ujert-2-1-4.pdf (Accessed: October 26, 2021).
- Bouznad, I.-E. et al. (2020) “Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: Case of the Algerian Highlands,” Arabian Journal of Geosciences, 13, 1281. Available at: https://doi.org/10.1007/s12517-020-06330-6.
- Box, G.E.P. and Jenkins, G.M. (1976) Time series analysis: Forecasting and control. Rev. edn. San Francisco: Holden-Day.
- Bucak, T. et al. (2018) “Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir,” Science of the Total Environment, 621, pp. 802–816. Available at: https://doi.org/10.1016/j.scitotenv.2017.11.258.
- Buyukyildiz, M. and Tezel, G. (2017) “Utilization of PSO algorithm in estimation of water level change of Lake Beysehir,” Theoretical and Applied Climatology, 128, pp. 181–191. Available at: https://doi.org/10.1007/s00704-015-1660-2.
- Cengiz, T.M. and Kahya, E. (2006) “Türkiye göl su seviyelerinin eğilim ve harmonik analizi [Trend and harmonic analysis of lake water levels in Turkey],” itüdergisi/d, 5(3), pp. 215–224. Available at: http://itudergi.itu.edu.tr/index.php/itudergisi_d/article/viewFile/511/441 (Accessed: May 10, 2021).
- Coban, V. et al. (2021) “Precipitation forecasting in Marmara region of Turkey,” Arabian Journal of Geosciences, 14, 86. Available at: https://doi.org/10.1007/s12517-020-06363-x.
- Dastorani, M. et al. (2016) “Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition,” Natural Hazards, 81(3), pp. 1811–1827. Available at: https://doi.org/10.1007/s11069-016-2163-x.
- Deoli, V. et al. (2021) “Water spread mapping of multiple lakes using remote sensing and satellite data,” Arabian Journal of Geosciences, 14, 2213. Available at: https://doi.org/10.1007/s12517-021-08597-9.
- Deoli, V., Kumar, D. and Kuriqi, A. (2022) “Detection of water spread area changes in eutrophic lake using Landsat data,” Sensors, 22(18), 6827. Available at: https://doi.org/10.3390/s22186827.
- Dimri, T., Ahmad, S. and Sharif, M. (2020) “Time series analysis of climate variables using seasonal ARIMA approach,” Journal of Earth System Science, 129, 149. Available at: https://doi.org/10.1007/s12040-020-01408-x.
- Doğan, A. et al. (2013) “Göl-yeraltı suyu-iklim ilişkisinin yeraltı suyu akım modeli ve coğrafi bilgi sistemleri (CBS) yardımıyla belirlenerek gölün optimum dinamik işletme modelinin oluş-turulması: Beyşehir gölü modeli [Investigation of the optimum dynamic operation model of the lake by determining the lake-groundwater-climate relationship with the groundwater flow model and geographic information systems (GIS): Lake Beyşehir model],” Project No: 109Y271. İstanbul: Tübitak, pp. 1–194.
- Domenico De, M. et al. (2013) “Chaos and reproduction in sea level,” Applied Mathematical Modelling, 37(6), pp. 3687–3697. Available at: https://doi.org/10.1016/j.apm.2012.08.018.
- Gownaris, N.J. et al. (2018) “Water level fluctuations and the ecosystem functioning of lakes,” Journal of Great Lakes Research, 44(6), pp. 1154–1163. Available at: https://doi.org/10.1016/j.jglr.2018.08.005.
- Han, P. et al. (2013) “Application of the ARIMA models in drought forecasting using the standardized precipitation index,” in D. Li and Y. Chen (eds.) Computer and Computing Technologies in Agriculture VI. CCTA 2012. IFIP Advances in Information and Communication Technology, 392. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-642-36124-1_42.
- Hannan, E.J. (1970) Multiple Time Series. Hoboken: John Wiley & Sons.
- Hyndman, R.J. and Athanasopoulos, G. (2018) Forecasting: Principles and practice. 2nd edn. Melbourne: OTexts.
- Hyndman, R.J. and Khandakar, Y. (2008) “Automatic time series forecasting: The forecast package for R,” Journal of Statistical Software, 27(3). Available at: https://doi.org/10.18637/jss.v027.i03.
- Kurunç, A., Yürekli, K. and Çevik, O. (2005) “Performance of two stochastic approaches for forecasting water quality and stream-flow data from Yeşilιrmak River, Turkey,” Environmental Modelling and Software, 20(9), pp. 1195–1200. Available at: https://doi.org/10.1016/j.envsoft.2004.11.001.
- Mansouri, R. et al. (2017) “Dynamic programming model for hydraulics and water resources simulating and optimizing water transfer system (a case study in Iran),” Aqua, 66(8), pp. 684–700. Available at: https://doi.org/10.2166/aqua.2017.110.
- Mirzavand, M. and Ghazavi, R. (2015) “A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods,” Water Resources Management, 29, pp. 1315–1328. Available at: https://doi.org/10.1007/s11269-014-0875-9.
- Mohanasundaram, S., Narasimhan, B. and Kumar, G.S. (2017) “Transfer function noise modelling of groundwater level fluctuation using threshold rainfall-based binary-weighted parameter estimation approach,” Hydrological Sciences Journal, 62(1),pp. 36–49. Available at: https://doi.org/10.1080/02626667.2016.1171325.
- Mwenda, A., Kuznetsov, D. and Mirau, S. (2015) “Analyzing the impact of historical data length in non-seasonal ARIMA models forecasting,” Mathematical Theory and Modeling, 5(10), pp. 77–85. Available at: https://core.ac.uk/download/pdf/234680245.pdf (Accessed: June 15, 2021).
- Nas, B. et al. (2009) “Seasonal and spatial variability of metals concentrations in Lake Beyşehir, Turkey,” Environmental Technology, 30(4), pp. 345–353. Available at: https://doi.org/10.1080/09593330902752984.
- Nash, J.E. and Sutcliffe, J.V. (1970) “River flow forecasting through conceptual models part I – A discussion of principles,” Journal of Hydrology, 10(3), pp. 282–290. Available at: https://doi.org/10.1016/0022-1694(70)90255-6.
- Özdemir, F.Y. and Özkan, Ö. (2007) “Importance of geological characteristics at determining basin conversation borders: Sample of Lake Beysehir (Konya) Basin,” International Congress on River Basin Management, Basin Resources Protection, pp. 294–307.
- Özparlak, H., Arslan, G. and Arslan, E. (2012) “Determination of some metal levels in muscle tissue of nine fish species from the Beyşehir Lake, Turkey,” Turkish Journal of Fisheries and Aquatic Sciences, 12(4). Available at: https://doi.org/10.4194/1303-2712-v12_4_04.
- Park, J., Onof, C. and Kim, D. (2019) “A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales,” Hydrology and Earth System Sciences, 23, pp. 989–1014. Available at: https://doi.org/10.5194/hess-23-989-2019.
- Parvaze, S. et al. (2021) “Temporal flood forecasting for trans-boundary Jhelum River of Greater Himalayas,” Theoretical and Applied Climatology, 144, pp. 493–506. Available at: https://doi.org/10.1007/s00704-021-03562-8.
- Sanli, A. et al. (2022) “Effect of lake-water budget management preferences on optimum operating conditions and neighboring basins interacting: case of Lake Beyşehir (Turkey),” Sustainable Water Resources Management, 8(1). Available at: https://doi.org/10.1007/s40899-021-00599-5.
- Sanli, A.E. et al. (2021) “Statistical assessment of interbasin water transfer for karst areas (Turkey),” Arabian Journal of Geosciences, 14, 2342. Available at: https://doi.org/10.1007/s12517-021-08693-w.
- Sirisha, U.M., Belavagi, M.C. and Attigeri, G. (2022) “Profit prediction using ARIMA, SARIMA and LSTM models in time series forecasting: A comparison,” IEEE Access, 10, pp. 124715–124727. Available at: https://doi.org/10.1109/access.2022.3224938.
- Srivastava, T. (2015) A complete tutorial on time series modeling in R. Analytics Vidhya. Last updated: 15 May 2023. Available at: https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/ (Accessed: May 15, 2020).
- Valipour, M.S. (2015) “Long-term runoff study using SARIMA and ARIMA models in the United States,” Meteorological Applications, 22(3), pp. 592–598. Available at: https://doi.org/10.1002/met.1491.
- Wang, H. et al. (2014) “An improved ARIMA model for precipitation simulations,” Nonlinear Processes in Geophysics, 21(6), pp. 1159–1168. Available at: https://doi.org/10.5194/npg-21-1159-2014.
- Wang, S., Feng, J. and Liu, G. (2013) “Application of seasonal time series model in the precipitation forecast,” Mathematical and Computer Modelling, 58(3–4), pp. 677–683. Available at: https://doi.org/10.1016/j.mcm.2011.10.034.
- Yerdelen, C. et al. (2021) “Estimation of standard duration maximum rainfall by using regression models,” Journal of Water and Land Development, 50, pp. 281–288. Available at: https://doi.org/10.24425/jwld.2021.138184.
- Yerdelen, C. and Abdelkader, M. (2021) “Hydrological data trend analysis with wavelet transform,” Comptes Rendus De L’Acade’mie Bulgare Des Sciences, 74(8), pp. 1194–1202. Available at: https://doi.org/10.7546/CRABS.2021.08.11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c8e4603-1298-4600-8ff5-c94db1c05f10