PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New method of obtaining CuO-SnO2 nanocomposite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowa metoda otrzymywania nanokompozytowego układu CuO-SnO2
Języki publikacji
EN
Abstrakty
EN
In this paper, we proposed a new synthesis method of a CuO-SnO2 composite based on the sol-gel technique and tin(IV) acetate as the precursor. In addition, for the first time we used a combination of high-energy homogenization and spray drying. The aim of the study was to obtain a nano-composite with a high Cu content. The system properties were investigated using XRD, TGA, TEM and SEM-EDS techniques. The obtained composite material contains an amorphous gel of tin(IV) hydroxide and crystalline copper(II) acetate. The presented method of synthesis allows for obtaining nano-composite particle sizes less than 50 nm, and a CuO-SnO2 nano-composite fraction with a particle size less than 5 nm. The small size of particles should result in high activity of the system.
PL
W niniejszej pracy proponujemy nową metodę otrzymywania układu CuO-SnO2, wykorzystującą technikę zol-żel i octan cyny(IV) jako prekursor SnO2. Ponadto, po raz pierwszy zastosowano połączenie techniki wysokoenergetycznej homogenizacji i suszenia rozpyłowego. Celem pracy było otrzymanie układu nanokompozytowego o wysokiej zawartości Cu. Otrzymane układy zostały poddane charakterystyce za pomocą technik XRD, TGA, TEM oraz SEM-EDS. Kompozyty zawierają amorficzny żel wodorotlenku cyny(IV) oraz krystaliczny octan cyny(II). Dzięki zastosowaniu wspomnianych technik udało się otrzymać cząsteczki o rozmiarach poniżej 50 nm, jak również pewną frakcję nanokompozytu CuO-SnO2 o rozmiarach poniżej 5 nm. Małe rozmiary cząstek powinny wpływać na wysoką aktywność takiego układu.
Słowa kluczowe
EN
sol-gel   composite   spray drying   SnO2   CuO   Cu  
Rocznik
Strony
214--217
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznań, Poland
autor
  • Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznań, Poland
  • Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznań, Poland
autor
  • Poznan Science and Technology Park of Adam Mickiewicz University Foundation, ul. Rubież 46, 61-612 Poznań, Poland
autor
  • Centre of Advanced Technologies Adam Mickiewicz University, ul. Umultowska 89c, 61-614 Poznań, Poland
  • Centre of Advanced Technologies Adam Mickiewicz University, ul. Umultowska 89c, 61-614 Poznań, Poland
autor
  • Centre of Advanced Technologies Adam Mickiewicz University, ul. Umultowska 89c, 61-614 Poznań, Poland
Bibliografia
  • [1] Martyla A., Majchrzycki L., Marciniak P., Sztorch B., Kopczyk M., Przekop R., Otrzymywanie cienkich warstw SnO2 dla fotowoltaicznych materiałów elektrodowych przy użyciu techniki zol-żel, Chemik 2013, 67 (12), 11-15.
  • [2] Elvers B., Hawkins S., Ravenscroft M., Schulz G. (Eds.), Ullmann Encyclopedia of Industrial Chemistry, vol. A13VCH, Weinheim 1989, 467.
  • [3] Kim S.T., Park M.S., Kim H.M., Systematic approach for the evaluation of the optimal fabrication conditions of a H2S gas sensor with Taguchi method, Sensors and Actuators B: Chemical 2004, 102, 253-260.
  • [4] Ionescu R., Hoel A., Granqvist C.G., Llobet E., Heszler P., Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors, Sensors and Actuators B: Chemical 2005, 104, 132-139.
  • [5] Sberveglieri G., Groppelli S., Nelli P., Pergo C., Valdre G., Camanzi A., Detection of sub-ppm H2S concentrations by means of SnO2 (Pt) thin films grown by RGTO technique, Sensors and Actuators B: Chemical 1993, 86, 15-16.
  • [6] Maekawa T., Tamaki J., Miura N., Yamazoe N., Sensing behavior of CuO-loaded SnO2 element for H2S detection, Chemical Letter 1991, 4, 575.
  • [7] Manorama S., Devi G.S., Rao V.J., Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition, Applied Physical Letter 1994, 64, 3163-3165.
  • [8] Chowdhuri A., Gupta V., Sreenivas K., Kumar R., Mozumdar S., Patanjali P.K., Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Applied Physical Letter 2004, 84, 1180-1183.
  • [9] Chowdhuri A., Sharma P., Gupta V., Sreenivas K., Rao K.V., H2S gas sensing mechanism of SnO2, films with ultrathin CuO dotted islands, Journal of Applied Physics 2002, 92(4), 2172-2180.
  • [10] Haridas D., Sreenivas K., Gupta V., Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection, Sensors and Actuators B: Chemical 2008, 133, 270-275.
  • [11] Chowdhuri A., Haridas D., Sreenivas K., Gupta V., Mechanism of trace level H2S gas sensing using of sputtered SnO2 thin films with CuO catalytic overlayer, International Journal Smart Sensing and Intelligent Systems 2009, 2(4), 540-548.
  • [12] Yamazoe N., Tamaki J., Miura N., Role of hetero-junctions in oxide semiconductor gas sensors, Materials Science and Engineering: B 1996, 41, 178-181.
  • [13] Tamaki J., Maekawa T., Miura N., Yamazoe N., CuO-SnO2 element for highly sensitive and selective detection of H2S, Sensors and Actuators B: Chemical 1992, 9(3), 197-203.
  • [14] Tamaki J., Shimanoe K., Yamada Y., Yamamoto Y., Miura N., Yamazoe N., Dilute hydrogen sulfide sensing properties of CuO-SnO2 thin film prepared by low-pressure evaporation method, Sensors and Actuators B: Chemical 1998, 49, 121-125.
  • [15] Maekawa T., Tamaki J., Miura N., Yamazoe N., Sensing behavior of CuO-loaded SnO2 element for H2S detection, Chemical Letter 1991, 20, 575-578.
  • [16] Lantto V., Romppainen P., Rantala T. S., Leppavuori S., Equilibrium and non-equilibrium conductance response of sintered SnO2 samples to H2S, Sensors and Actuators B: Chemical 1991, 5, 451-455.
  • [17] Jianping L., Yue W., Xiaoguang G., Quing M., Li W., Jinghong H., H2S sensing properties of the SnO2-based thin films, Sensors and Actuators B: Chemical 2000, 65, 111-113.
  • [18] Vasiliev R.B., Rumyantseva M.N., Podguzova S.E., Ryzhikov A.S., Ryabova L.I., Gaskov A.M., Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure, Materials Science and Engineering: B 1991, 57, 241-246.
  • [19] Chowdhuri A., Gupta V., Sreenivas K., Kumar R., Mozumdar S., Patanjali P. K., Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Applied Physical Letter 2004, 84, 1180-1182.
  • [20] Agilent Technologies, Program CrysAlisPro, ver.171.37.31, Yarnton, Oxfordshire, England 2014.
  • [21] Martyla A., Kopczyk M., Marciniak P., Przekop R., Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex as a Pt source for Pt/SnO2 catalyst, J. Nanomaterials 2014, Article ID 275197.
  • [22] Martyla A., Kopczyk M., Marciniak P., Przekop R., One-pot method of synthesis of Pt/SnO2 system and its electrocatalytic activity, Chem. Central. Journal 2014, 8, 49.
  • [23] Judd M.D., Plunkett B.A., Pope M.I., The thermal decomposition of calcium, sodium, silver and copper (II) acetates, Journal of Thermal Analysis 1974, 6, 555-563.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c8ae5c4-8aea-48c4-bbb8-30c6aae1657e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.