Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this study was to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) in firefighter protective clothing that was used under different conditions (rescue operations and live-fire enclosure training) and then washed with water and detergents in different types of washing machines (special-purpose, industrial and general-purpose) using different washing agents. Ultra-high performance liquid chromatography with fluorescence detection (UHPLC/FL) was applied to determine PAH content in the outer shell, midline moisture-proof membrane and the inner thermal barrier of protective clothing. The analysis involved fifteen PAHs, with the total PAH concentration being strongly dependent on clothing layer and the washing machine type. The total PAH concentration in clothing worn during rescue operations (0.02±0.00 – 3.00±0.22 μg∙g-1) proved to be slightly lower as compared to that in clothing used during live-fire training (0.08±0.00 – 3.56±1.29 μg∙g-1). The highest total PAH content (3.56±1.29 μg∙g-1) was found in the outer shell of clothing worn during live-fire training (it was closely followed by the maximum for rescue operations – 3.01±0.22 μg∙g-1). Cleaning in different types of washing machines allowed removing a considerable proportion of PAH contamination, with effectiveness ranging from 91±16% for the outer shell to 55±25% for the membrane, and 67±19% for the thermal barrier. Furthermore, a relationship was observed between decontamination effectiveness and the washing machine type and washing agent type and the washing process conditions used. In the case of each clothing material, the best results were obtained with special-purpose equipment.
Wydawca
Rocznik
Tom
Strony
85--110
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment
autor
- Central Institute for Labour Protection – National Research Institute, Department of Chemical, Biological and Aerosol Hazards
autor
- Central Institute for Labour Protection – National Research Institute, Electron Microscopy Laboratory
Bibliografia
- 1. Abrard, S., Bertrand, M., De Valence, T., Schaupp, T., (2019). French firefighters exposure to benzo[a]pyrene after simulated structure fires. International Journal of Hygiene and Environmental Health, no. 222, 84–88. https://doi.org/10.1016/j.ijheh.2018.08.010
- 2. Banks, A.P.W., Wang, X., Engelsman, M., He, Ch., Osorio, A.F., Mueller, J.F., (2021). Assessing decontamination and laundering processes for the removal of polycyclic aromatic hydrocarbons and flame retardants from firefighting uniforms. Environmental Research, no. 194, 110616. https://doi.org/10.1016/j.envres.2020.110616
- 3. Calvillo, A., Haynes, E., Burkle, J., Schroeder, K., Calvillo, A., Reese, J., Reponen, T., (2019). Pilot study on the efficiency of water-only decontamination for firefighters’ turnout gear. Journal of Occupational and Environmental Hygiene, no. 16, 199-205. https://doi.org/10.1080/15459624.2018.1554287
- 4. Casjens, S., Brüning, T., Taeger, D., (2020). Cancer risks of firefighters: a systematic review and metaanalysis of secular trends and regionspecific differences. International Archives of Occupational and Environmental Health, no. 93, 839–852. https://doi.org/10.1007/s00420-020-01539-0
- 5. Fent, K.W., Alexander, B., Roberts, J., Robertson, S., Toennis, C., Sammons, D., Bertke, S., Kerber, S., Smith, D., Horn, G., (2017). Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures. Journal of Occupational and Environmental Hygiene, no. 14(10), 801–814. https://doi.org/10.1080/15459624.2017.1334904
- 6. Horn, G.P., Fent, K.W., Kerber, S., Smith, L.D., (2022). Hierarchy of contamination control in the fire service: review of exposure control options to reduce cancer risk. Journal of Occupational and Environmental Hygiene, no. 19(9), 538–557. https://doi.org/10.1080/15459624.2022.2100406
- 7. Jakobsen, J., Babigumira, R., Danielsen, M., Grimsrud, T.K., Olsen, R., Rosting, C., Veierød, M.B., Kjærheim, K., (2010). Work conditions and practices in Norwegian fire departments from 1950 until today. A survey on factors potentially influencing carcinogen exposure. Safety Health Work, no. 11, 509–516. https://doi.org/10.1016/j.shaw.2020.07.004
- 8. Keir, J.L.A., Akhtar, U.S., Matschke, D.M.J., White, P.A., Kirkham, T.L., Chan, H.M., Blais, J.M., (2020). Polycyclic aromatic hydrocarbon (PAH) and metal contamination of air and surfaces exposed to combustion emissions during emergency fire suppression: Implications for firefighters’ exposures. Science of The Total Environment, no. 698, 134211. https://doi.org/10.1016/j.scitotenv.2019.134211
- 9. Kirk, K.M., Logan, M.B., (2015). Firefighting instructors’ exposures to polycyclic aromatic hydrocarbons during live fire training scenarios. Journal of Occupational and Environmental Hygiene, no. 12, 227–234. https://doi.org/10.1080/15459624.2014.955184
- 10. Kokot-Góra, S., Porowski, R., Słupik, D., (2019). Zapobieganie nowotworom. Przegląd Pożarniczy, no. 1.
- 11. Krzemińska, S., Szewczyńska, M., (2020). Analysis and assessment of hazards caused by chemicals contaminating selected items of firefighter personal protective equipment – a literature review. Safety and Fire Technology, no. 92(56), 92–109. https://doi.org/10.12845/sft.56.2.2020.6
- 12. Krzemińska, S., Szewczyńska, M., (2022). PAH contamination of firefighter protective clothing and cleaning effectiveness. Fire Safety Journal, no. 131, 103610. https://doi.org/10.1016/j.firesaf.2022.103610
- 13. Mayer, A.C., Fent, K.W., Bertke, S.J., Horn, G.P., Smith, D.L., Kerber, S., La Guardia, M.J., (2019). Firefighter hood contamination: efficiency of laundering to remove PAHs and FRs. Journal of Occupational and Environmental Hygiene, no. 16(2), 129–140. https://doi.org/10.1080/15459624.2018.1540877
- 14. Mayer, A.C., Fent, K.W., Wilkinson, A., Chen, I-C., Kerber, S., Smith, D.L., Kesler, R.M., Horn, G.P., (2022). Characterizing exposure to benzene, toluene, and naphthalene in firefighters wearing different types of new or laundered PPE. International Journal of Hygiene and Environmental Health, no. 240, 113900. https://doi.org/10.1016/j.ijheh.2021.113900
- 15. Paris-Davila, T., Gaines, L.G.T., Lucas, K., Nylander-French, L.A., (2023). Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS) – A review. American Journal of Industrial Medicine, 1–18. https://doi.org/10.1002/ajim.23461
- 16. Peaslee, G.F., Wilkinson, J.T., McGuinness, S.R., Tighe, M., Caterisano, N., Lee, S., Gonzales, A., Roddy, M, (2020). Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: firefighter textiles. Environmental Science and Technology Letters, no. 7(8), 594−599. https://doi.org/10.1021/acs.estlett.0c00410
- 17. Pleil, J.D., Stiegel, M.A., Fent, K.W., (2014). Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. Journal of Breath Research, 8: 037107. https://doi 10.1088/1752-7155/8/3/037107
- 18. Polańczyk, A., Dmochowska, A., Majder-Łopatka, M., Salamonowicz, Z., (2019). Analiza mieszanin organicznych występujących podczas działań ratowniczych prowadzonych przez grupy ratownictwa chemicznego w Państwowej Straży Pożarnej. Zeszyty Naukowe SGSP, 70(2): 7–19.
- 19. Rachwał, M., Majder-Łopatka, M., Węsierski, T., Ankowski, A., Młynarczyk, M., Bralewski M., Spławska, A., Piec, R., (2021). Thermal properties of special new generation personal protective clothing for firefighters-rescuers. Zeszyty Naukowe SGSP, no. 1(80), 45–67. https://doi: 10.5604/01.3001.0015.6479
- 20. Rosenfeld, P.E., Spaeth, K.R., Remy, L.L., Byers, V., Muerth, S.A., Hallman, R.C., Summers-Evans, J., Barker, S., (2023). Perfluoroalkyl substances exposure in firefighters: Sources and implications. Environmental Research, no. 220, 115164. https://doi:10.1016/j.envres.2022.115164.
- 21. Stec, A.A., Dickens, K.E., Salden, M., (2018). Occupational exposure to polycyclic aromatic hydrocarbons and elevated cancer incidence in firefighters. Scientific Reports, no. 8, 2476. https://doi.org/10.1038/s41598-018-20616-6
- 22. Stec, A.A., (ed.), (2020). Minimising firefighters’ exposure to toxic fire effluents. Interim Best Practice Report. University of Central Lancashire, Fire Brigades Union FBU.
- 23. Stull, J.O., (ed.), (2006). Evaluation of the cleaning effectiveness and impact of esporta and industrial cleaning techniques on firefighter protective clothing. Technical Report International Personnel Protection, Inc.
- 24. Walczak, A., Rogula-Kozłowska, W., Pieniak, D., Piątek, P., Wąsik, W., (2023). Influence of environmental conditions on mechanical properties of personal protective equipment. Zeszyty Naukowe SGSP; 1 (88): 27–43. https://doi:10.5604/01.3001.0053.9742
- 25. Wolffe, T.A.M., Clinton, A., Robinson, A., Turrell, L., Stec, A.A., (2023). Contamination of UK firefighters personal protective equipment and workplaces. Scientific Reports, no. 13: 65. https://doi.org/10.1038/s41598-022-25741-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c877461-30b8-4be5-aef9-eb3647022f6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.