PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The genesis of base and precious metals-bearing epithermal veins in the Gharehchay-Kurmolla area, south of Tikmehdash, NW Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gharehchay-Kurmolla (Gh-Ku) base and precious metals occurrence is located in ~2 km south of Tikmehdash, 75 km south-east of Tabriz, and is a part of Bostanabad-Miyaneh gold-bearing district in the West Alborz-Azarbaidjan structural zone. Mineralization in the study area occurs in quartz veins and veinlets hosted by the Eocene volcanic-pyroclastic units as well as granite. Recognizable alteration zones around the quartz veins and veinlets include silicic, phyllic, intermediate argillic, and propylitic types. The mineralization was developed during three conspicuous stages. In stage 1, minerals such as quartz, pyrite, and chalcopyrite with slight amounts of gold were formed. During stage 2, minerals such as quartz, galena, sphalerite, and gold together with pyrite and chalcopyrite were developed. Stage 3 was concurrent with deposition of quartz accompanied by Mn-oxides and hydroxides (pyrolusite and psilomelane). The major gangue minerals are quartz, adularia, sericite, epidote, chlorite and calcite. Micro-thermometric investigations on primary 2-phase (LV) fluid inclusions in quartz crystals showed that the hydrothermal fluids responsible for mineralization had temperatures and salinities ranging from 215 to 325°C and from 2.6 to 10.4 wt.% NaCl eq., respectively. The oxygen isotopic composition of the fluid (+9.7 to +12.5‰) suggests that the ore-forming solutions had a largely magmatic component. The sulphur isotopic composition of the fluid (–1.5 to –3.4‰) is also indicative of magmatic origin. On the basis of data obtained from micro-thermometric and stable isotope analyses, boiling along with mixing were two important mechanisms involved in the precipitation of ore and gangue minerals in the study area. The geological and geochemical characteristics of the Gh-Ku area indicate that mineralization in this area is of epithermal type with a low-sulphidation style.
Rocznik
Strony
art. no. 43
Opis fizyczny
Bibliogr. 91 poz., fot., tab., wykr.
Twórcy
  • University of Tabriz, Faculty of Natural Sciences, Department of Earth Sciences, Tabriz, Iran
  • University of Tabriz, Faculty of Natural Sciences, Department of Earth Sciences, Tabriz, Iran
  • University of Mohaghegh Ardabili, Faculty of Basic Sciences, Depar ment of Geology, Ardabil, Iran
Bibliografia
  • 1. Ahmad, S.N., Rose, A.W., 1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Economic Geology, 75: 229-250. https://doi.Org/10.2113/gsecongeo.75.2.229
  • 2. Albinson, T.F., 1988. Geologic reconstruction of paleosurfaces in the Sombrerete, Colorado, and Fresnillo dis tricts, Zacatecas State, Mexico. Economic Geology, 83: 1647-1667. https://doi.Org/10.2113/gsecongeo.83.8.1647
  • 3. Albinson, T., Norman, D.I., Cole, D., Chomiak, B., 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In: New Mines and Discoveries in Mexico and Central America (eds. T. Albinson and C.E. Nelson): 1-32. Society of Economic Geologists, Littleton. https://doi.org/10.5382/SP.08.01
  • 4. André-Mayer, A.S., Leroy, J.L., Bailly, L., Chauvet, A., Marcoux, E., Grancea, L., Liosa, F., Rosas, J., 2002. Boiling and vertical mineralization zoning: a case study from the Apacheta low- sulfidation epithermal gold-silver deposit, southern Peru. Mineralium Deposita, 37: 452-464. https://doi.org/10.1007/s00126-001-0247-2
  • 5. Behrouzi, A., Amini Fazl, A., Amini Azar, R., 1997. Geological map of Bostanabad, scale 1:100000. Geological Survey of Iran.
  • 6. Bodnar, R.J., 2003. Introduction to aqueous-electrolyte fluid inclusions. In: Fluid Inclusions: Analysis and Interpretation (eds. I. Samson, A. Anderson and D. Marshal): 81-100. Mineralogical Association of Canada, Vancouver.
  • 7. Bodnar, R.J., Burnham, C.W., Sterner, S.M., 1985. Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 49: 1861-1873. https://doi.org/10.1016/0016-7037(85)90081 -X
  • 8. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., Steele- MacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. In: Treatise on Geochemistry: 119-142. Elevier. https://doi.org/10.1016/B978-0-08-095975-7.01105-0
  • 9. Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal fields. Annual Review of Earth and Planetary Sciences, 6: 229-248. https://doi.org/10.1146/annurev.ea.06.050178.001305
  • 10. Burnham, C.W., 1979. Magmas and hydrothermal fluids. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes): 71-136. John Wiley and Sons, New York.
  • 11. Calagari, A.A., 2003. Stable iso tope (S, O, H and C) studies of phyllic and potassic-phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaijan, Iran. Journal of Asian Earth Sciences, 21: 767-780. https://doi.org/10.1016/S1367-9120(02)00083-4
  • 12. Calagari, A.A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23: 179-189. https://doi.org/10.1016/S1367-9120(03)00085-3
  • 13. Camprubí, A., Albinson, T., 2007. Epithermal deposits in Mexico: Update of current knowledge, and an empirical reclassification. GSA Special Papers, 422: 377-415. https://doi.org/10.1130/2007.2422d4)
  • 14. Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., Villanueva-Estrada, R.E., 2011. A model of boiling for fluid inclusion studies: application to the Bolańos Ag-Au-Pb-Zn epithermal deposit, Western Mexico. Journal of Geochemical Exploration, 110: 118-125> https://doi.org/10.1016/j.gexplo.2011.04.005
  • 15. Chen, Y.J., Pirajno, F., Li, N., Guo, D.S., Lai, Y., 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: implications for ore genesis. Ore Geology Reviews, 35: 245-261; https://doi.org/10.1016/j.oregeorev.2008.11.003
  • 16. Chen, C., Wu, T., Sha, D., Li, D., Yang, Z., Zhang, J., Shang, Q., 2022. Genesis of the Dongpuzi Gold Deposit in the Liaodong Peninsula, NE China: Constraints from geology, fluid inclusion, and C-H-O-S-Pb isotopes. Minerals, 12: 1008. https://doi.org/10.3390/min12081008
  • 17. Çiçek, M., Oyman, T., 2016. Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu±Au±Ag deposits at Koru and Tesbihdere min i ng districts, Çanakkale, Biga Peninsula. NW Turkey. Ore Geology Reviews, 78: 176-195. https://doi.org/10.1016/j.oregeorev.2016.03.020
  • 18. Cole, D.R., Drummond, S.E., 1986. The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits. Journal of Geochemical Exploration, 25: 45-79. https://doi.org/10.1016/0375-6742(86)90007-5
  • 19. Cooke, D.R., Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13: 221-244. https://doi.org/10.5382/Rev. 13.06
  • 20. Davis, D.W., Lowenstein, T.K., Spencer, R.J., 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochimica et Cosmochimica Acta, 54: 591-601. https://doi.org/10.1016/0016-7037(90)90355-0
  • 21. Ebrahimi, S., Pan, Y., Rezaeian, M., 2021. Origin and evolution of the Masjed Daghi Cu-Au-Mo porphyry and gold epithermal vein system, NW Iran: constraints from fluid inclusions and sulfur isotope studies. Mineralogy and Petrology, 115: 643-662.~ https://doi.org/10.1007/s00710-021-00761-z
  • 22. Einaudi, M.T., Hedenquist, J.W., Inan, E.E., 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In: Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth (eds. S.F. Simmons and I. Graham): 285-313. Society of Economic Geologists, Littleton. https://doi.org/10.5382/SP. 10.15
  • 23. Faure, G., 1986. Principles of Iso tope Geology. John Wiley and Sons, New York.
  • 24. Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C., Hayashi, S., 2002. The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology, 97: 481-498. https://doi.org/10.2113/gsecongeo.97.3.481
  • 25. Ferdowsi, R., Calagari, A.A., Simmonds, V., Miranvari, A., 2021. Evolution of the gold (copper) mineralization in the porphyry stock and the related skarn zones and epithermal veins in the Astarghan area, NW Iran: evidence from fluid inclusion, mineral chemistry and sulfur isotope analyses. Ore Geology Reviews, 136: 104196. https://doi.org/10.1016/j.oregeorev.2021.104196
  • 26. Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions. In: Geology and Geochemistry of Epithermal Systems (eds. B.R. Berger and P.M. Bethke): 45-61. Society of Economic Geologists, Littleton. https://doi.org/10.5382/Rev.02.03
  • 27. Ghasemi Siani, M., Mehrabi, B., Nazarian, M., Lotfi, M., Corfu, F., 2022. Geology and genesis of the Chomalu polymetallic deposit, NW Iran. Ore Geology Reviews, 143: 104763. https://doi.org/10.1016/j.oregeorev.2022.104763
  • 28. Goldstein, R.H., 2003. Petrographic analysis of fluid inclusions. In: Fluid Inclusions: Analysis and Interpretation (eds. I. Samson, A. Anderson and D. Marshall): 9-53. Mineral Associated of Canada, Vancouver.
  • 29. Goldstein, R.H., Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31. https://doi.org/10.2110/scn.94.31
  • 30. Hassani Soughi, Z., Calagari, A.A., Sohrabi, Gh., 2021. Gold-sulfide mineralization and microthermometry in quartz veins and veinlets in the Gharehchay area, south of Tikmehdash, East-Azarbaidjan province (in Persian). Iranian journal of Crystallography and Mineralogy, 29: 97-110. doi:10.52547/ijcm.29.1.97
  • 31. Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519-527. https://doi.org/10.1038/370519a0
  • 32. Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93: 373-404. https://doi.Org/10.2113/gsecongeo.93.4.373
  • 33. Hedenquist, J.W., Arribas, A.R., Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: Gold in 2000 (eds. S.G. Hagemann and P.E. Brown): 245-277. Society of Economic Geologists, Littleton. https://doi.org/10.5382/Rev. 13.07
  • 34. Heidari, S.M., Daliran, F., Paquette, J.L., Gasquet, D., 2015. Geology, timing, and genesis of the high sulfidation Au (-Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews, 65: 460-486. https://doi.org/10.1016/j.oregeorev.2014.05.013
  • 35. Henley, R.W., Hughes, G.O., 2000. Underground fumaroles: “Excess heat” effects in vein formation. Economic Geology, 95: 453-466. https://doi.org/10.2113/gsecongeo.95.3.453
  • 36. Hoefs, J., 2015. Stable Isotope Geochemistry, 7th edition. Springer International Publishing, Switzerland.
  • 37. Jobson, D.H., Boulter, C.A., Foster, R.P., 1994. Structural controls and genesis of epithermal gold-bearing breccias at the Lebong Tandai mine, Western Sumatra. Indonesia. Journal of Geochemical Exploration, 50: 409-428. https://doi.org/10.1016/0375-6742(94)90034-5
  • 38. Klemm, L.M., Pettke, T., Heinrich, C.A., Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102: 1021-1045. https://doi.org/10.2113/gsecongeo.102.6.1021
  • 39. Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhao, J.X., 2019a. Fluid inclusion and stable isotope constraints on ore Genesis of the Zajkan epithermal base metal deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 109: 564-584. https://doi.org/10.1016/j.oregeorev.2019.05.014
  • 40. Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhao, J.X., 2019b. Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb-Zn-Cu (Ag) deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113: 103087. https://doi.org/10.1016/j.oregeorev.2019.103087
  • 41. Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z., Zhang, X.N., 2020. Genesis of the Abbasabad epithermal base metal deposit, NW Iran: evidences from ore geology, fluid inclusion and O-S isotopes. Ore Geology Reviews, 126: 103752. https://doi.org/10.1016/j.oregeorev.2020.103752
  • 42. Leary, S., Sillitoe, R.H., Stewart, P.W., Roa, K.J., Nicolson, B.E., 2016. Discovery, geology, and origin of the Fruta del Norte epithermal gold-silver deposit, southeastern Ecuador. Economic Geology, 111: 1043-1072. https://doi.org/10.2113/econgeo.111.5.1043
  • 43. Li, S.N., Ni, P., Bao, T., Li, C.Z., Xiang, H.L., Wang, G.G., Huang, B., Chi, Z., Dai, B.Z., Ding, J.Y., 2018a. Ge ology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: implications for ore genesis and mineral exploration. Journal of Geochemical Exploration, 195: 16-30. https://doi.org/10.1016/j.gexplo.2018.02.009
  • 44. Li, S.N., Ni, P., Bao, T., Xiang, H.L., Chi, Z., Wang, G.G., Bao, H., Ding, J.Y., Dai, B.Z., 2018b. Genesis of the Ancun epithermal gold deposit, southeast China: Evidence from fluid inclusion and stable isotope data. Journal of Geochemical Exploration, 195: 157-177. https://doi.org/10.1016/hgexplo.2018.01.016
  • 45. Li, Y.B., Liu, J.M., 2006. Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 70: 1789-1795. https://doi.org/10.1016/i.gca.2005.12.015
  • 46. Liu, J., Mao, J.W., Wu, G., Wang, F., Luo, D.F., Hu, Y.Q., Li, T.G., 2014. Fluid inclusions and H-O-S-Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongiiang Province. China. Ore Geology Reviews, 59: 83-96. https://doi.org/10.1016/j.oregeorev.2013.12.006
  • 47. Maghsoudi, A., Rahmani, M., Rashidi, B., 2005. Gold deposits and indications of Iran (in Persian). Arian Zamin Publication, Tehran.
  • 48. Méheut, M., Lazzeri, M., Balan, E., Mauri, F., 2007. Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta, 71: 3170-3181. https://doi.org/10.1016/hgca.2007.04.012
  • 49. Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M., Marsh, E.E., 2016. Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Guloieh district, NW Iran. Ore Geology Reviews, 78: 41-57. https://doi.org/10.1016/i.oregeorev.2016.03.016
  • 50. Miranvari, A.S.A., Calagari, A.A., Ferdowsi, R., 2020. Evolution of ore-forming fluids in the Sarilar gold-bearing silicic veins: evidence from fluid inclusions and sulphur stable isotopes studies, East-Azarbaidian, NW of Iran. Periodic di Mineralogia, 89: 265-278. https://rosa.uniroma1.it/rosa04/periodico di mineralogia/article/view/16745/16122
  • 51. Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanaiuato, Mexico: application to exploration. Journal of Geochemical Exploration, 114: 20-35. https://doi.org/10.1016/i.gexplo.2011.12.001
  • 52. Moncada, D., Baker, D., Bodnar, R.J., 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanaiuato Mining District, Mexico. Ore Geology Reviews, 89: 143-170. https://doi.org/10.1016/i.oregeorev.2017.05.024
  • 53. Moritz, R., Jackquat, S., Chambefort, I., Fontignie, D., 2003. Controls on ore formation at high sulfidation Au-Cu Chelopech deposit, Bulgaria: Evidence from infrared fluid inclusion microthermometry of enargite and isotope systematics of barite. In: Mineral Exploration and Sustainable Development (ed. D.G. Eliopoulos): 1209-1212. Millpress, Rotterdam.
  • 54. Moussa, N., Boiron, M.C., Grassineau, N.V., Asael, D., Fouquet, Y., Le Gall, B., Rolet, J., Etoubleau, J., Delacourt, C., 2019. Mineralogy, fluid inclusions and stable isotope study of epithermal Au-Ag-Bi-Te mineralization from the SE Afar Rift (Diibouti). Ore Geology Reviews, 111: 102916. https://doi.org/10.1016/i.oregeorev.2019.05.002
  • 55. Muntean, J.L., Einaudi, M.T., 2001. Porphyry-epithermal transition: Maricunga Belt, Northern Chile. Economic Geology, 96: 743-772. https://doi.org/10.2113/gsecongeo.96.4.743
  • 56. Nabavi, M., 1976. An Introduction to the Geology of Iran (in Persian). Geological Survey of Iran Publication, Tehran.
  • 57. Ohmoto, H., Rye, R.O., 1979. Isotope of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes): 509-567. John Wiley and Sons, New York.
  • 58. Ouyang, H., Wu, X., Mao, J.W., Su, H., Santosh, M., Zhou, Z., Li, C., 2014. The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing'an Range: evidence from geology, fluid inclusions, and U-Pb and Re-Os geochronology. Ore Geology Reviews, 63: 238-251. https://doi.org/10.1016/i.oregeorev.2014.05.016
  • 59. Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin.
  • 60. Prokofiev, V.Y., Garofalo, P.S., Bortnikov, N.S., Kovalenker, V.A., Zorina, L.D., Grichuk, D.V., Selektor, S.L., 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105: 395-416. https://doi.org/10.2113/gsecongeo. 105.2.395
  • 61. Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37: 29-48. https://doi.org/10.1016/0009-2541(82)90065-1
  • 62. Richards, J.P., Wilkinson, D., Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101: 1455-1496. https://doi.org/10.2113/gsecongeo.101.8.1455
  • 63. Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12.
  • 64. Roedder, E., Bodnar, R.J., 1980. Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403
  • 65. Ronacher, E., Richards, J.P., Johnston, M.D., 2000. Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita, 35: 683-688. https://doi.Org/10.1007/s001260050271
  • 66. Rusk, B.G., Reed, M.H., Dilles, J.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103: 307-334. https://doi.org/10.2113/gsecongeo.103.2.307
  • 67. Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Economic Geology, 88: 733-753. https://doi.org/10.2113/gsecongeo.88.3.733
  • 68. Sabeva, R., Mladenova, V., Mogessie, A., 2017. Ore petrology, hydrothermal alteration, fluid inclusions, and sulfur stable isotopes of the Milin Kamak in termediate sulfidation epithermal Au-Ag deposit in Western Srednogorie, Bulgaria. Ore Geology Reviews, 88: 400-415. https://doi.org/10.1016/j.oregeorev.2017.05.013
  • 69. Shepherd, T.J., Ranbin, A.H., Alderton, D.H.M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow.
  • 70. Sillitoe, R.H., Hedenquist, J.W., 2003. Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal deposits. In: Volcanic, Geothermal and Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth (eds. S.F. Simmons and I.J. Graham): 315-343. Society of Economic Geologists Special Publication. https://doi.org/10.5382/SP. 10.16
  • 71. Simeone, R., Simmons, S.F., 1999. Mineralogical and fluid inclusion studies of low sulfidation epithermal veins at Osilo (Sardinia), Italy. Mineralium Deposita, 34: 705-717. https://doi.org/10.1007/s001260050229
  • 72. Simmons, S.F., Browne, P.R.L., 2000. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95: 971-999. https://doi.org/10.2113/gsecongeo.95.5.971
  • 73. Simmons, S.F., Brown, K.L., 2006. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 314: 288-291. doi:10.1126/science.1132866
  • 74. Simmons, S.F., White, N.C., John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. In: One Hundredth Anniversary Volume (eds. J.W. Hedenquist, J.F.H. Thompson, J.R. Goldfarb and J.P. Richards): 485-522. Society of Economic Geologists, Littleton. https://doi.org/10.5382/AV100.16
  • 75. Simpson, M.P., Mauk, J.L., Simmons, S.F., 2001. Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au-Ag deposit, New Zealand. Economic Geology, 96: 773-796 .https://doi.org/10.2113/gsecongeo.96.4.773
  • 76. Soberano, O.B., Gabo-Ratio, J.A.S., Queaňo, K.L., Dimalanta, C.B., Yumul, Jr, G.P., Andal, E.S., Yonezu, K., Boyce, A.J., 2021. Mineral chemistry, fluid inclusion and stable isotope studies of the Suyoc epithermal veins: Insights to Au-Cu mineralization in southern Mankayan Mineral District, Philippines. Ore Geology Reviews, 131: 104035. https://doi.org/10.1016/j.oregeorev.2021.104035
  • 77. Taylor, R., 2009. Ore Textures: Recognition and Interpretation. Springer-Verlag, Berlin.
  • 78. Thiersch, P.C., Williams-Jones, A.E., Clark, J.R., 1997. Epithermal mineralization and ore controls of the Shasta Au-Ag deposit, Toodoggone District, British Columbia, Canada. Mineralium Deposita, 32: 44-57. https://doi.org/10.1007/s001260050071
  • 79. TSIG., 2022. The report of the end of the exploration operation of Tikmehdash polymetal area (in Persian). Tavangaran Sahand Industrial Group, Iran, Report.
  • 80. Van den Kerkhof, A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55: 27-47. https://doi.org/10.1016/S0024-4937(00)00037-2
  • 81. White, N.C., Hedenquist, J.W., 1990. Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36: 445-474. https://doi.org/10.1016/0375-6742(90)90063-G
  • 82. White, N.C., Hedenquist, J.W., 1995. Epithermal gold deposits: styles, characteristics and exploration. SEG Discovery, l 27: 1-13. https://doi.org/10.5382/SEGnews. 1995-23.fea
  • 83. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187. https://doi.org/10.2138/am.2010.3371
  • 84. Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5
  • 85. Xie, Y., Li, L., Wang, B., Li, G., Liud, H., Li, Y., Dong, S., Zhou, J., 2017. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: evidence for a magmatic link. Ore Geology Reviews, 80: 891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007
  • 86. Yardley, B.W.D., 2005. Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100: 613-632. https://doi.org/10.2113/gsecongeo. 100.4.613
  • 87. Yardley, B.W.D., Bodnar, R.J., 2014. Fluids in the continental crust. Geochemical Perspectives, 3: 1-127. https://10.7185/geochempersp.3.1
  • 88. Yu, J., Li, N., Shu, S.P., Zhang, B., Guo, J.P., Chen, Y.J., 2018. Geology, fluid inclusion and H-O-S isotopes of the Kuruer Cu-Au deposit in Western Tianshan, Xinjiang, China. Ore Geology Reviews, 100: 237-249. https://doi.org/10.1016/j.oregeorev.2017.07.016
  • 89. Yuan, Z.Z., Li, Z.K., Zhao, X.F., Sun, H.S., Qiu, H.N., Li, J.W., 2019. New constraints on the genesis of the giant Dayingezhuang gold (silver) deposit in the Jiaodong district. North China Craton. Ore Geology Reviews, 112: 103038. https://doi.org/10.1016/j.oregeorev.2019.103038
  • 90. Zamanian, H., Rahmani, S., Zareisahameih, R., 2019. Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu-Au deposit in Zanjan Province, NW Iran: implications for ore genesis. Ore Geology Reviews, 112: 103014. https://doi.org/10.1016/j.oregeorev.2019.103014
  • 91. Zhai, D.G., Liu, J.J., Wang, J.P., Yao, M.J., Wu, S.H., Fu, C., Liu, Z.J., Wang, S.G., Li, Y.X., 2013. Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Review, 55: 204-224. https://doi.org/10.1080/00206814.2012.692905
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c86e411-75fa-4b6c-b9b8-0ce764a69b7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.