PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of bulk nanobubbles on flocculation of kaolin in the presence of cationic polyacrylamide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study explores the impact of nanobubble flotation technology on fine mineral processes, focusing on its interaction with cationic polyacrylamide (CPAM) in kaolin flocculation. Nanobubbles influence particle size and promote aggregation. Experimental procedures involve bulk nanobubble preparation, kaolin suspension, and CPAM solutions, with analysis of sedimentation rates, turbidity, and zeta potential. Results show accelerated sedimentation and reduced turbidity with nanobubbles compared to traditional methods. Zeta potential measurements and DLVO theory support nanobubbles' role in reducing electrostatic interaction, facilitating flocculation. This research advances understanding in nanobubble-mediated mineral processing, highlighting eco-friendly flocculants and practical implications for optimization.
Rocznik
Strony
art. no. 186729
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
autor
  • Shaanxi Xineng Coal Preparation Technology Co. Ltd, Xi’an 710100, China
  • Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining &Technology, Xuzhou 221116, China
autor
  • Shaanxi Xineng Coal Preparation Technology Co. Ltd, Xi’an 710100, China
autor
  • Shaanxi Xineng Coal Preparation Technology Co. Ltd, Xi’an 710100, China
autor
  • Shaanxi Xineng Coal Preparation Technology Co. Ltd, Xi’an 710100, China
autor
  • Shaanxi Xineng Coal Preparation Technology Co. Ltd, Xi’an 710100, China
  • General Studies Department, Jubail Industrial College, P.O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
autor
  • Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining &Technology, Xuzhou 221116, China
Bibliografia
  • AGMO HERNÁNDEZ, V., 2023. An overview of surface forces and the DLVO theory. ChemTexts 9(4), 10.
  • AHMADI, R., KHODADADI, D. A., ABDOLLAHY, M., FAN, M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol. 24(4), 559-566.
  • ALHESHIBRI, M., QIAN, J., JEHANNIN, M., & CRAIG, V. S. J., 2016. A History of Nanobubbles. Langmuir 32(43), 11086-11100.
  • BU, X., & ALHESHIBRI, M., 2021. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status. Ultrason. Sonochem. 76, 105629.
  • BU, X., ZHANG, T., PENG, Y., XIE, G., WU, E., 2018. Multi-stage flotation for the removal of ash from fine graphite using mechanical and centrifugal forces. Minerals 8(1), 15.
  • BU, X., ZHOU, S., TIAN, X., NI, C., NAZARI, S., ALHESHIBRI, M., 2022. Effect of aging time, airflow rate, and nonionic surfactants on the surface tension of bulk nanobubbles water. J. Mol. Liq. 359, 119274.
  • CALGAROTO, S., AZEVEDO, A., RUBIO, J., 2015. Flotation of quartz particles assisted by nanobubbles. Int. J. Miner. Process. 137, 64-70.
  • CALGAROTO, S., WILBERG, K. Q., RUBIO, J., 2014. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng. 60, 33-40.
  • CHANG, G., XING, Y., ZHANG, F., YANG, Z., LIU, X., GUI, X., 2020. Effect of Nanobubbles on the Flotation Performance of Oxidized Coal. 5(32), 20283-20290.
  • DERJAGUIN, B. V., DUKHIN, S. S., 1961. Theory of flotation of small and medium-size particles. Trans. Inst. Min. Metall. 70, 221-246.
  • DING, S., PAN, F., ZHOU, S., BU, X., ALHESHIBRI, M., 2023. Ultrasonic-assisted flocculation and sedimentation of coal slime water using the Taguchi method. Energy Sources Part A-Recovery Util. Environ. Eff. 45(4), 10523-10536.
  • DING, S., ZOU, H., ZHOU, S., BU, X., BILAL, M., WANG, X., 2022. The preparation of hydroxypropyl starch grafted acrylamide and its enhancement on flocculation of coal slime water. Energy Sources Part A-Recovery Util. Environ. Eff. 44(3), 7934-7948.
  • ETCHEPARE, R., OLIVEIRA, H., NICKNIG, M., AZEVEDO, A., RUBIO, J., 2017. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Miner. Eng. 112, 19-26.
  • FAN, X., ZHANG, Z., LI, G., ROWSON, N. A., 2004. Attachment of solid particles to air bubbles in surfactant-free aqueous solutions. Chem. Eng. J. 59(13), 2639-2645.
  • GAO, Y., LI, Q., SHI, Y., CHA, R., 2016. Preparation and Application of Cationic Modified Cellulose Fibrils as a Papermaking Additive. Int. J. Polym. Sci. 2016, 6978434.
  • HUANG, K., YOON, R.-H., 2020. Control of bubble ζ-potentials to improve the kinetics of bubble-particle interactions. Miner. Eng. 151, 106295.
  • JIANG, L., KRASOWSKA, M., FORNASIERO, D., KOH, P., RALSTON, J., 2010. Electrostatic attraction between a hydrophilic solid and a bubble. 12(43), 14527-14533.
  • LAGALY, G., ZIESMER, S., 2003. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 100-102, 105-128.
  • LEE, C. S., ROBINSON, J., CHONG, M. F., 2014. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Protect. 92(6), 489-508.
  • LEE, K. E., TENG, T. T., MORAD, N., POH, B. T., HONG, Y. F., 2010. Flocculation of kaolin in water using novel calcium chloride-polyacrylamide (CaCl2-PAM) hybrid polymer. Sep. Purif. Technol. 75(3), 346-351.
  • LEI, W., ZHANG, M., ZHANG, Z., ZHAN, N., FAN, R., 2020. Effect of bulk nanobubbles on the entrainment of kaolinite particles in flotation. Powder Technol. 362, 84-89.
  • LI, C., ZHANG, H., 2022a. A review of bulk nanobubbles and their roles in flotation of fine particles. Powder Technol. 395, 618-633.
  • LI, C., ZHANG, H., 2022b. Surface nanobubbles and their roles in flotation of fine particles – A review. J. Ind. Eng. Chem. 106, 37-51.
  • LI, H., CAI, T., YUAN, B., LI, R., YANG, H., LI, A., 2015. Flocculation of Both Kaolin and Hematite Suspensions Using the Starch-Based Flocculants and Their Floc Properties. Ind. Eng. Chem. Res. 54(1), 59-67.
  • LI, P., ZHANG, M., LEI, W., YAO, W., FAN, R., 2020. Effect of Nanobubbles on the Slime Coating of Kaolinite in Coal Flotation. 5(38), 24773-24779.
  • LIU, L., HU, S., WU, C., LIU, K., WENG, L., ZHOU, W., 2021. Aggregates characterizations of the ultra-fine coal particles induced by nanobubbles. Fuel 297, 120765.
  • LIU, Z., HUANG, M., LI, A., YANG, H., 2017. Flocculation and antimicrobial properties of a cationized starch. Water Res. 119, 57-66.
  • LU, J., YUAN, Z., LIU, J., LI, L., ZHU, S., 2015. Effects of magnetite on magnetic coating behavior in pentlandite and serpentine system. 72, 115-120.
  • MA, F., TAO, D. (2022). A Study of Mechanisms of Nanobubble-Enhanced Flotation of Graphite, Nanomaterials (Vol. 12).
  • MISHCHUK, N. A., MARININ, A. I., MARCHENKO, A. M., 2020. Coagulation, Sedimentation, and Consolidation of Aqueous Clay Dispersions. J. Water. Chem. Technol. 42(1), 8-15.
  • NAZARI, S., SHAFAEI, S. Z., GHARABAGHI, M., AHMADI, R., SHAHBAZI, B., MAOMING, F., 2019. Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. Int. J. Min. Sci. Technol. 29(2), 289-295.
  • NAZARI, S., ZHOU, S., HASSANZADEH, A., LI, J., HE, Y., BU, X., KOWALCZUK, P. B., 2022. Influence of operating parameters on nanobubble-assisted flotation of graphite. 20, 3891-3904.
  • NI, C., BU, X., XIA, W., PENG, Y., YU, H., XIE, G., 2018. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol. 339, 434-439.
  • SU, Y., DU, H., HUO, Y., XU, Y., WANG, J., WANG, L., ZHAO, S., XIONG, S., 2016. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method. Int. J. Biol. Macromol. 87, 34-40.
  • TAO, D., 2022. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review. Miner. Eng. 183, 107554.
  • TIAN, D., XIE, H.-Q., 2008. Synthesis and Flocculation Characteristics of Konjac Glucomannan-g-Polyacrylamide. Polym. Bull. 61(3), 277-285.
  • WANG, J.-P., CHEN, Y.-Z., YUAN, S.-J., SHENG, G.-P., YU, H.-Q., 2009. Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res. 43(20), 5267-5275.
  • WANG, X., SHAOQI, Z., BU, X., NI, C., XIE, G., PENG, Y., 2021. Investigation on interaction behavior between coarse and fine particles in the coal flotation using focused beam reflectance measurement (FBRM) and particle video microscope (PVM). Sep. Sci. Technol. 56(8), 1418-1430.
  • WANG, X., YUAN, S., LIU, J., ZHU, Y., HAN, Y., 2022. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism. J. Mol. Liq. 346, 118312.
  • WU, C., WANG, L., HARBOTTLE, D., MASLIYAH, J., XU, Z., 2015. Studying bubble–particle interactions by zeta potential distribution analysis. J. Colloid Interface Sci. 449, 399-408.
  • WU, Z., TAO, D., TAO, Y., MA, G., 2023. New insights into mechanisms of pyrite flotation enhancement by hydrodynamic cavitation nanobubbles. Miner. Eng. 201.
  • YANG, R., LI, H., HUANG, M., YANG, H., LI, A., 2016. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59-89.
  • YANG, Z., WU, H., YUAN, B., HUANG, M., YANG, H., LI, A., BAI, J., CHENG, R., 2014. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water. Chem. Eng. J. 244, 209-217.
  • YOU, L., LU, F., LI, D., QIAO, Z., YIN, Y., 2009. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer. J. Hazard. Mater. 172(1), 38-45.
  • ŻBIK, M., HORN, R. G., 2003. Hydrophobic attraction may contribute to aqueous flocculation of clays. Colloid Surf. A-Physicochem. Eng. Asp. 222(1), 323-328.
  • ZHANG, F., SUN, L., YANG, H., GUI, X., SCHÖNHERR, H., KAPPL, M., CAO, Y., XING, Y., 2021. Recent advances for understanding the role of nanobubbles in particles flotation. Adv. Colloid Interface Sci. 291, 102403.
  • ZHOU, S., BU, X., ALHESHIBRI, M., ZHAN, H., XIE, G., 2022. Floc structure and dewatering performance of kaolin treated with cationic polyacrylamide degraded by hydrodynamic cavitation. Chem. Eng. Commun. 209(6), 798-807.
  • ZHOU, S., BU, X., WANG, X., NI, C., MA, G., SUN, Y., XIE, G., BILAL, M., ALHESHIBRI, M., HASSANZADEH, A., CHELGANI, S. C., 2022. Effects of surface roughness on the hydrophilic particles-air bubble attachment. J. Mater. Res. Technol-JMRT 18, 3884-3893.
  • ZHOU, S., LI, Y., NAZARI, S., BU, X., HASSANZADEH, A., NI, C., HE, Y., XIE, G., 2022. An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. Minerals 12(8).
  • ZHOU, S., NAZARI, S., HASSANZADEH, A., BU, X., NI, C., PENG, Y., XIE, G., HE, Y., 2022. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. Ultrason. Sonochem. 84, 105965.
  • ZHOU, S., WANG, X., BU, X., WANG, M., AN, B., SHAO, H., NI, C., PENG, Y., XIE, G., 2020. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles. Ultrason. Sonochem. 64, 105005.
  • ZHOU, W., WU, C., LV, H., ZHAO, B., LIU, K., OU, L., 2020. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation. Appl. Surf. Sci. 508, 145282.
  • ZHOU, Z. A., 2018. Comment on “Aqueous dispersions of nanobubbles: Generation, properties and features“ by A. Azevedo, R. Etchepare, S. Calgaroto, J. Rubio [Miner. Eng. 94 (2016) 29–37]. Miner. Eng. 117, 117-120.
  • ZHOU, Z. A., XU, Z., FINCH, J. A., MASLIYAH, J. H., CHOW, R. S., 2009. On the role of cavitation in particle collection in flotation-A critical review. II. Miner. Eng. 22(5), 419-433.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c80bb95-297d-4dab-8f10-c0766c52ca66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.