Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a constitutive model is developed by incorporating precipitation strengthening into a dislocation-density-based crystal plasticity (CP) model to simulate the mechanical properties of 2024 aluminium alloy (AA). The proposed model considers the contributions of solid solution strengthening and strengthening from dislocation–precipitate interactions into the total slip resistance along with the forest hardening due to dislocation–dislocation interactions. A term accounting for the multiplication of dislocations due to their interactions with the non-shearable precipitates in the alloy is incorporated in the hardening law. The developed precipitation strengthening-based CP model is implemented into the crystal plasticity finite element method (CPFEM) for simulating the macroscopic mechanical behavior of AA2024-T3 alloy for uniaxial tension over various strain rates. The macroscopic response of the polycrystal representative volume element (RVE) used for simulations is computed using computational homogenization. The effect of meshing resolution on the RVE response is studied using four different mesh discretizations. Predictions of the macroscopic behavior by the developed model are in good agreement with the experimental findings. Additionally, the contribution of model parameters to the total uncertainty of the predicted stress has been assessed by conducting a sensitivity analysis. A parametric analysis with different precipitate radii and volume fractions has been done for finding the effect of precipitates on the macroscopic and localized deformation.
Czasopismo
Rocznik
Tom
Strony
art. no. e155, 2023
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, UIET Panjab University, Chandigarh 160014, India
autor
- PKG Development, SK Hynix, Icheon 17336, Republic of Korea
autor
- Department of Mechanical Engineering, UIET Panjab University, Chandigarh 160014, India
autor
- Department of Mechanical Engineering, UIET Panjab University, Chandigarh 160014, India
Bibliografia
- 1. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Design. 2014;56:862–71.
- 2. Andersen SJ, Marioara CD, Friis J, Wenner S, Holmestad R. Pre- cipitates in aluminium alloys. Adv Phys: X. 2018;3(1):1479984.
- 3. Zhu L, Li N, Childs P. Light-weighting in aerospace component and system design. Propuls Power Res. 2018;7(2):103–19.
- 4. Argon A. Strengthening mechanisms in crystal plasticity, OUP Oxford, 2007.
- 5. Sehitoglu H, Foglesong T, Maier H. Precipitate effects on the mechanical behavior of aluminum copper alloys part i. experi- ments,. Metall Mater Trans A. 2005;36(3):749–61.
- 6. Esin VA, Briez L, Sennour M, Köster A, Gratiot E, Crépin J. Precipitation-hardness map for Al-Cu-Mg alloy (AA2024-T3). J Alloys Compd. 2021;854:157164.
- 7. Garcia-Hernandez J, Garay-Reyes C, Gomez-Barraza I. Influ- ence of plastic deformation and cu/mg ratio on the strengthening mechanisms and precipitation behavior of AA2024 aluminum alloys. J Mater Res Technol. 2019;8(6):5471–5.
- 8. Sehitoglu H, Foglesong T, Maier H. Precipitate effects on the mechanical behavior of aluminum copper alloys Part ii mod- eling. Metall Mater Trans A. 2005;36(13):763–70.
- 9. Lebensohn RA, Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture develop- ment of polycrystals: application to zirconium alloys. Metall Mater Trans A. 1993;41(9):2611–24.
- 10. Acharya A, Beaudoin A. Grain-size effect in viscoplas- tic polycrystals at moderate strains. J Mech Phys Solids. 2000;48(10):2213–30.
- 11. Bhattacharyya J, Bittmann B, Agnew S. The effect of precipi- tate-induced backstresses on plastic anisotropy: Demonstrated by modeling the behavior of aluminum alloy, 7085. Int J Plast. 2019;117:3–20.
- 12. Turner P, Tomé C. A study of residual stresses in zircaloy-2 with rod texture. Acta Metall Mater. 1994;42(12):4143–53.
- 13. Anjabin N, Taheri AK, Kim H. Crystal plasticity modeling of the effect of precipitate states on the work hardening and plastic anisotropy in an Al-Mg-Si alloy. Comput Mater Sci. 2014;83:78–85.
- 14. Myhr O, Grong Ø, Andersen S. Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater. 2001;49(1):65–75.
- 15. Gouttebroze S, Mo A, Grong Ø, Pedersen K, Fjær H. A new constitutive model for the finite element simulation of local hot forming of aluminum 6xxx alloys. Metall and Mater Trans A. 2008;39(3):522–34.
- 16. Kocks U, Mecking H. Physics and phenomenology of strain hardening: the fcc case. Prog Mater Sci. 2003;48(3):171–273.
- 17. Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 1984;32(1):57–70.
- 18. Li YL, Kohar CP, Mishra RK, Inal K. A new crystal plastic- ity constitutive model for simulating precipitation-hardenable aluminum alloys. Int J Plast. 2020;132:102759.
- 19. Esmaeili S, Lloyd D. Modeling of precipitation hardening in pre- aged AlMgSi (Cu) alloys. Acta Mater. 2005;53(20):5257–71.
- 20. Molinari A, Ahzi S, Kouddane R. On the self-consistent mod- eling of elastic-plastic behavior of polycrystals. Mech Mater. 1997;26(1):43–62.
- 21. Li YL, Kohar CP, Muhammad W, Inal K. Precipitation kinetics and crystal plasticity modeling of artificially aged AA6061. Int J Plast. 2022;152:103241.
- 22. Bardel D, Perez M, Nelias D, Deschamps A, Hutchinson CR, Maisonnette D, Chaise T, Garnier J, Bourlier F. Coupled pre- cipitation and yield strength modelling for non-isothermal treat- ments of a 6061 aluminium alloy. Acta Mater. 2014;62:129–40.
- 23. Peirce D, Asaro RJ, Needleman A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983;31(12):1951–76.
- 24. Li L, Shen L, Proust G, Loo Chin Moy C, Ranzi G, A crystal plasticity representative volume element model for simulating nanoindentation of aluminium alloy 2024, ICCM2012 Proceed- ings (2012).
- 25. Li L, Shen L, Proust G, Moy CK, Ranzi G. Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024. Mater Sci Eng, A. 2013;579:41–9.
- 26. Efthymiadis P, Pinna C, Yates JR. Fatigue crack initiation in AA2024: a coupled micromechanical testing and crystal plastic- ity study. Fatigue Fract Eng Mater Struct. 2019;42(1):321–38.
- 27. Toursangsaraki M, Wang H, Hu Y, Karthik D. Crystal plastic- ity modeling of laser peening effects on tensile and high cycle fatigue properties of 2024–T351 aluminum alloy. J Manuf Sci Eng. 2021;143(7):1–24.
- 28. Aghabalaeivahid A, Shalvandi M. Microstructure-based crystal plasticity modeling of AA2024-T3 aluminum alloy defined as the 𝛼-al, 𝜃-Al2Cu, and S-Al2CuMg phases based on real metal- lographic image. Mater Res Express. 2021;8(10):106521.
- 29. Peirce D, Asaro R, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 1982;30(6):1087–119.
- 30. Kocks U, Argon A, Ashby M Thermodynamics and kinetics of slip, 1975, Progress in Materials Science 19.
- 31. Cheong K-S, Busso EP. Discrete dislocation density model- ling of single phase fcc polycrystal aggregates. Acta Mater. 2004;52(19):5665–75.
- 32. Alankar A, Mastorakos IN, Field DP. A dislocation-density- based 3d crystal plasticity model for pure aluminum. Acta Mater. 2009;57(19):5936–46.
- 33. Rodríguez-Martínez JA, Rusinek A, Arias A. Thermo-viscoplastic behaviour of 2024–T3 aluminium sheets subjected to low veloc- ity perforation at different temperatures. Thin-Walled Struct. 2011;49(7):819–32.
- 34. Khan I, Starink MJ. A multi-mechanistic model for precipitation strengthening in Al-Cu-Mg alloys during non-isothermal heat treatments. Mater Sci Forum. 2006;519:277–82.
- 35. Bardel D, Perez M, Nelias D, Dancette S, Chaudet P, Massardier V. Cyclic behaviour of a 6061 aluminium alloy: Coupling precipi- tation and elastoplastic modelling. Acta Mater. 2015;83:256–68.
- 36. Segurado J, Llorca J. Simulation of the deformation of polycrys- talline nanostructured ti by computational homogenization. Com- put Mater Sci. 2013;76:3–11.
- 37. Abd El-Aty A, Xu Y, Ha S, Zhang S-H. Computational homogeni- zation of tensile deformation behaviors of a third generation Al-Li alloy 2060–T8 using crystal plasticity finite element method. Mater Sci Eng A. 2018;731:583–94.
- 38. Li J, Romero I, Segurado J. Development of a thermo-mechani- cally coupled crystal plasticity modeling framework: application to polycrystalline homogenization. Int J Plast. 2019;119:313–30.
- 39. Huet C. Application of variational concepts to size effects in elas- tic heterogeneous bodies. J Mech Phys Solids. 1990;38(6):813–41.
- 40. Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative vol- ume. J Mech Phys Solids. 1994;42(12):1995–2011.
- 41. Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids. 2002;50(10):2107–21.
- 42. Singh L, Ha S, Vohra S, Sharma M. Computational homogeniza- tion based crystal plasticity investigation of deformation behavior of AA2024-T3 alloy at different strain rates. Multidiscip Model Mater Struct. 2023;19(3):420–40.
- 43. Ritz H, Dawson P. Sensitivity to grain discretization of the simu- lated crystal stress distributions in fcc polycrystals. Modell Simul Mater Sci Eng. 2008;17(1):015001.
- 44. Knezevic M, Drach B, Ardeljan M, Beyerlein IJ. Three dimen- sional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput Methods Appl Mech Eng. 2014;277:239–59.
- 45. Feather WG, Lim H, Knezevic M. A numerical study into ele- ment type and mesh resolution for crystal plasticity finiteelement modeling of explicit grain structures. Comput Mech. 2021;67(1):33–55.
- 46. Quey R, Dawson P, Barbe F. Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing. Comput Methods Appl Mech Eng. 2011;200(17–20):1729–45.
- 47. Agaram S, Kanjarla AK, Bhuvaraghan B, Srinivasan SM. Disloca- tion density based crystal plasticity model incorporating the effect of precipitates in IN718 under monotonic and cyclic deformation. Int J Plast. 2021;141:102990.
- 48. Beausir B, Fundenberger J, Analysis tools for electron and x-ray diffraction, atex-software; université de lorraine-metz. 2017, Available online: www. atex-software. eu.
- 49. Quey R, Kasemer M. The neper/fepx project: free/open-source polycrystal generation, deformation simulation, and post-process- ing. IOP Conference Series: Mat Sci Eng. 2022;1249:012021.
- 50. Ha S, Jang J-H, Kim K. Finite element implementation of dis- location-density-based crystal plasticity model and its appli- cation to pure aluminum crystalline materials. Int J Mech Sci. 2017;120:249–62.
- 51. Balasubramanian S, Anand L. Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J Mech Phys Solids. 2002;50(1):101–26.
- 52. Liu G, Zhang G, Ding X, Sun J, Chen K. The influences of multi- scale-sized second-phase particles on ductility of aged aluminum alloys. Metall Mater Trans A. 2004;35(6):1725–34.
- 53. Bandyopadhyay R, Prithivirajan V, Sangid MD. Uncertainty quan- tification in the mechanical response of crystal plasticity simula- tions. JOM. 2019;71(8):2612–24.
- 54. Asaro RJ. Crystal plasticity. ASME J Appl Mech. 1983;50(4b):921–34. 55. E. P. Busso. Cyclic deformation of monocrystalline nickel alumi- nide and high temperature coatings, Ph.D. thesis, Massachusetts Institute of Technology. 1990.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c803ecc-6509-49ab-8c83-0edee2267abb