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Abstract: Single-branch filters are still popular and are commonly used for power 
quality improvement purposes. Analysis of a single-branch filter is a relatively simple 
task. Although individual filters tuned to specific harmonics can be easily designed, after 
connecting them into a group it turns out that the capacitance and inductance mutually 
influence each other, distorting the resulting frequency characteristics. This article pre-
sents a matrix method for design a group of single-branch filters, so that the resultant 
frequency characteristic satisfies the design requirements including the requirements for 
location of the frequency characteristic maxima. Designer indicates the frequencies of the 
parallel resonances. 
Key words: passive filter, compensation of reactive power, harmonics 

 
 
 
 

1. Introduction 
 

 Due to the ever-growing number of industrial nonlinear, large power loads the high harmo-
nics passive filters are still a commonly used mean of mitigating the voltage distortion at the 
point of load connection [1-5]. Passive harmonic filters are still very commonly used to im-
prove the quality of electricity supply (reducing distortion of voltage and current, and funda-
mental harmonic power factor correction) [6-8]. There are several passive filter systems, with 
different structures and different operating characteristics [9-12]. The primary is still a single-
branch filter, which is predominant in industrial applications and certainly is the basis for 
understanding the operation of more complex filter structures [13-14]. 
 The essential data, necessary for filter design are: 
 $ data about the source of harmonics: amplitude-frequency spectrum of a nonlinear load 

obtained from measurements or from technical specification of the filtered load, reactive 
power of the fundamental harmonic to be compensated, etc., 
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 $ data on the supply network: the frequency characteristic of the power system impedance at 
the point of the filter common coupling (PCC) or, if this data is not available, the short-
circuit capacity, diagrams and technical data of the nearest neighbourhood of the consi-
dered point of connection, the voltage distortion spectrum at this point, total voltage har-
monic distortion (THDU) set forth in the technical conditions of connection, harmonic ratio 
for specific harmonics, etc., 

 $ data about the filter: location of installation, technical specification of passive elements to 
be used, etc. 

 
 

2. Single-branch passive filter 
 
 Most theoretical considerations of filter design using analytical methods are carried out 
with the following simplifying assumptions: 
 $ high harmonics source is a current source, 
 $ inductance LF and capacitance CF of the filter are centred and have a constant value in the 

considered frequency range.  
 $ filter is loaded only with fundamental harmonic and the harmonic to which it is tuned, 
 $ resistance RF = 0. 
 Power passive filter can have different configurations, it can also be a combination of 
several single-branch filters or other filters to eliminate certain harmonics. Impedance charac-
teristic of the filter is a function of the frequency. At the frequency of eliminated harmonic the 
filter impedance reaches its minimum, thus the major portion of the current harmonics (of this 
frequency) flows through the filter instead of a supply network. In simple terms the filter 
design can be reduced to shaping its impedance characteristic. 
 The basic structure selected for further analysis was a single-frequency single-branch filter, 
its diagram shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The equivalent circuit for the single-branch filter and its characteristics 
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 The filter equivalent impedance is given in the form (1) 

  ( ) ,1jj
F

FFF C
LRZ

ω
ωω −+=   (1) 

where: RF, LF, CF – the filter resistance, inductance and capacitance, respectively. 
 In order to simplify the analysis it is assumed RF = 0. The single-branch filter is used for 
elimination of unwanted harmonics and to power factor correction of the power system. The 
filter resonant angular frequency is described by (2) 

  ,1
1r

FF
r ωω n

CL
==          (2) 

where: ωr – resonant angular frequency, nr – order of the resonant frequency, ω1 – funda-
mental harmonic angular frequency. 
 Finding the LF value from the formula (3) for resonant angular frequency: 
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and substituting (3) into (1), we get 
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 Now the capacitance value CF should be selected, such as to minimise the reactive power 
generated by the nonlinear load (5)  
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where: U – operating voltage of the filter capacitors, QF – the filter capacitive reactive power 
(fundamental harmonic). 
 Substituting (4) into (5) and considering .1ωω =  
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 Parameters of a single-branch filter can be determined from the formulas (3) and (6).  
 In practical applications a passive filter design problem consists in designing a filter that 
will reduce the voltage total harmonic distortion (THDU) below the allowable limit. This 
means, that reduction of one harmonic may not be sufficient (the factor THDU may still be 
higher than the allowed limit). In such cases, consideration should be given the opportunity to 
design additional filters for subsequent harmonics present in the system. The project task will 
be to design a group of single-branch filters. Each filter is tuned to a different harmonic 
present in the system in order to reduce it. 
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3. A group of single-branch filters 

 The main task in designing a filters group is to divide the total reactive power of the funda-
mental harmonic between various branches of the filter (7): 

  ,
1

)(FnF r∑
=

=
k

i
iQQ                                                (7) 

where: QFnr(i) – the i-th filters passive power (fundamental harmonic). 
 This task can be accomplished using the assumption that passive powers of individual 
filters are inversely proportional to the order of the harmonic to be eliminated (8) 

  )1(Fn)1(r)(Fn)(r rr ++= iiii QnQn      i = 1, ..  , d – 1,                                     (8) 

where: nr ( i) – order of harmonic tuned of filter, d – number of designed filters 
Example 1. For non-linear load connected to the supply line voltage 6 kV (SC = 500 MVA), 
required reactive power of the filters group equals –1 Mvar and on the condition of the 
exceeding of the limit for THDU value implicitly require the need design four single-branch 
filters to reduce harmonic orders: 5, 7, 11 and 13th.  
 Applying (3), (6) – (8) the filters’ parameters have been found (Tab. 1). 
 

Table 1. Parameters of the group of 4 single-branch filters 

nr(i)  5 7 11 13 

QFnr(i)  kvar !391.63 !279.73 !178.01 !150.63

CFnr(i)  μF 33.24 24.23 15.61 13.24 

LFnr(i)  mH 12.2 8.5 5.4 4.5 
 
 The resultant characteristic of the group of 4 filters, designed according to the above 
method, is shown in Figure 2. As seen from the characteristic, the impedance reaches its mini-
mum for the eliminated harmonics but for the 6th, 9th and 12th harmonic the impedance is 
relatively low, whereas it is required to attain its maxima for these harmonics. 
 
      
 
 
 
 
 
 
 
 
 
 

Fig. 2. The graph of impedance: a) group of 4 filters, b) viewed from the load 
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4. Matrix method of designing the group of single-branch filters 
 
 The impedance of a single-branch filter is given from the formula (4); the resultant admit-
tance of the group of filters is given by the relationship: 
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ω                                   (9) 

 For eliminated harmonics 

  ( ) ( )( ) .0Im0 )(rnF)(rnF =⇒= ii ZZ ωω             (10) 

 For frequencies for which the characteristics of impedance reaches maxima 
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where: ωpm(j) – angular frequencies for which the characteristics of impedance reaches maxima 
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 From (5) and (11) and considering the assumption RFnr(i) = 0 
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 Based on (11) and (13) linear equations can be formulated 
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 Taking into account Equations (9) and (14) leads to the equation 
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 Transforming (15) we get the matrix equation:  
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 From matrix Equation (16) can be determined the capacitance of each filter: 

  
,1

Fnr

Fnr

WAC

WCA

⋅=

=⋅

−
                (17) 

where:  
  .1 2211 dd nmnmnm <<<<<<= L                      (18) 

 By solving the matrix Equation (17) by Cramer's rule, we get  
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 The determinant of the matrix A (with respect to first row) 
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where Adop1,j – algebraic complement of the matrix A with respect to element A1,j 
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 Since in the Equation (19) 
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where l is column number. 
 Finally complement Adop1,i defines the relationship  
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 Regarding (18), it is evident that the elements )( 22
kj mm −  are smaller then 0 and )( 22
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are smaller then 0, because for these components j is smaller than k. Also, considering (18), 
for j smaller than k, elements )( 22
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 In the formula (25) all components are positive, that means all complements are positive 
i.e. there are of same sign. This allows concluding that the relation (19) allows to determine all 
positive values of CFnr(i), for all i = 1, ..., d.  

Example 2. For the data from Example 1 design a filter group using the matrix method. The 
impedance characteristic should reach maximums for frequencies 300 Hz, 450 Hz and 600 Hz 
that means m1 = 6, m2 = 9 and m3 = 12, (n1 = 5,  n2 = 7,  n3 = 11 and  n4 = 13). 
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 Substituting numerical data into Equation (16) 
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 (23) 

 Equation (23) could be easy solved using Matlab software (Tab. 2). 
 

Table 2. Parameters of the group of 4 filters designed using the matrix method 

nr(i)  5 7 11 13 
 QFnr(i)  kvar !533.94 !230.3 !113.93 !121.79 
 CFnr(i)  μF 45.33 19.95 10 10.7 
 LFnr(i)  mH 8.9 10.4 8.4 5.6 

 
 Figure 3 shows the resultant characteristic of a group of filters designed using the matrix 
method. The shape of the impedance characteristic complies with the assumed one and with 
other design requirements. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The graph of impedance: a) group of 4 filters, b) viewed from the load 

 
5. Conclusions 

 Graphs of the designed filters group power and powers of individual filters are shown in 
Figure 4. Powers of individual filters determined using the matrix method and those deter-
mined by means of the method in the third section are compared for a given harmonic (con-
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secutively). The power of the 5th harmonic filter, determined using the matrix method is 
greater than the power using the former method. For other harmonics the powers determined 
by means of the matrix method are smaller. The power of the last filter (QFn13) is greater then 
that of the previous filter (QFn11). 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Comparison of the powers of filters designed with both methods 

 
 The advantage of the proposed method is that the frequency characteristic of the group of 
filters can be shaped in the way given a priori. The shape of the frequency characteristic does 
not result from selection of the filters’ group, but is based on the made assumption and the set 
of parameters selected for optimisation. 
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