PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Off-grid power supply – the future of district heating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the first off-grid system designed to supply electricity to the equipment mounted on components of the district heating network in district heating chambers. The proposed off-grid system is equipped, among other things, with a turbine and a generator intended for electricity production. On-grid power supply is a common way of providing electricity with strictly defined, known and verified operating parameters. For off-grid power supply, however, there are no documented testing results showing such parameters. This paper presents selected results of tests and measurements carried out during the operation of an off-grid supply system powering the equipment installed in a district heating chamber. The values of voltage obtained from a turbine-driven generator are analysed in detail. The analysis results can be used as the basis for further works aiming to optimize the off-grid system of electricity supply to devices installed in district heating chambers.
Rocznik
Strony
201--216
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Municipal Heat Supply Company, Jana Pawła II 188, 30-969 Kraków, Poland
autor
  • Municipal Heat Supply Company, Jana Pawła II 188, 30-969 Kraków, Poland
  • Cracow University of Technology, Department of Energy, Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Cracow University of Technology, Department of Energy, Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • [1] Turski M., Sekret R.: The need to reorganize district heating systems in the light of changes taking place in the building sector. Rynek Energii 119(2015), 4, 27–34 (in Polish).
  • [2] Joniec W.: District heating on the way to 5G generation. Rynek Instalacyjny (2022),3, 36–38 (in Polish).
  • [3] EU H2020 FLEXYNETS Project: Fifth Generation, Low Temperature, High Exergy, District Heating and Cooling Networks, 2015.
  • [4] Calise F., Liberato Cappiello F., Cimmino L., Dentice d’Accadia M., Vicidomini M.: Optimal design of a 5th generation district heating and cooling network based on seawater heat pumps. Energ. Convers. Manage. 267(2022), 115912.
  • [5] Grzebielec A., Rusowicz A., Jaworski M., Laskowski R.: Possibility of using adsorption refrigeration unit in district heating network. Arch. Thermodyn. 36(2015), 3,15–24.
  • [6] Frotscher O., Oppelt T., Urbanrck T., Otto S., Heinrich I. Schmidt A., Göschel T., Uhlig U., Frey H.: Software-in-the-loop-simulation of a district heating system as test environment for a sophisticated operating software. In Proc. 9th Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications – SIMULTECH, Prague, 2019, 223–230.
  • [7] Bujalski M., Madejski P., Fuzowski K.: Day-ahead heat load forecasting during the off-season in the district heating system using generalized additive model. Energ. Buildings 278(2023), 112630.
  • [8] Leśko M., Bujalski W.: Modeling of district heating networks for the purpose of operational optimization with thermal energy storage. Arch. Thermodyn. 38(2017),4, 139–163.
  • [9] Lan T., Strunz K.: Droop control for district heating networks: Solution for temperature control of multi-energy system with renewable power supply. Int. J. Electr. Power Energ. Syst. 146(2023), 108663.
  • [10] Lindgren J.: Numerical modelling of district heating networks. MSc thesis, Umeå University, Umeå 2017.
  • [11] Rzewuski M.: On-grid, off-grid and hybrid installations. Automatyka B2B (2021) (in Polish). https://automatykab2b.pl/fotowoltaika/55360-instalacje-on-grid-off-grid-ihybrydowe (accessed 8 Dec. 2022).
  • [12] Lund H., Østergaard P.A., Connolly D., Mathiesen B.V.: Smart energy and smart energy systems. Energy 137(2017), 556–565.
  • [13] Leitner B., Widl E., Gawlik W., Hofmann R.: A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids. Energy 182(2019), 729–738.
  • [14] Zhang Y., Campana P.E., Yang Y., Stridh B., Lundblad A., Yan J.: Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building. Applied Energy 223(2018) 430–442.
  • [15] Mazurek M., Piękoś M.: New controllers based on water turbines – recovery of mechanical energy from mains water. Polski Instalator (2017) (in Polish). https://www. polskiinstalator.com.pl/artykuly/doradca-energetyczny/2065-nowe-regulatorywzorowane-na-turbinach-wodnych-%E2%80%93-odzysk-energii-mechanicznej-zwody-sieciowej (accessed 8 Nov. 2022).
  • [16] https://www.fif.com.pl/pl/przetworniki-pomiarowe-moduly-rozszerzen/421-przetwornik-napiecia-mb-1u-1.html (accessed 15 Jan. 2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c7b2559-8af9-46db-9db3-0746e2bdd6d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.