PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL). For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ) the heat influence zone (HAZ) and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.
Twórcy
autor
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Department of Welding, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] K. Partes, G. Sepold, J Mater Process Tech. 195, 27-33 (2008).
  • [2] E. Kennedy, G. Byrne, D. N. Collins, J Mater Process Tech. 155-156, 1855-1860 (2004).
  • [3] L. A. Dobrzański, B. Tomiczek, M. Pawlyta, P. Nuckowski, Mater Sci Forum. 783, 1591-1596 (2014).
  • [4] P. Bała, Arch Metall Mater. 54, (2), 491-498 (2009).
  • [5] L. A. Dobrzański, K. Labisz, M. Piec, A. J. Lelątko, A. Klimpel, Mater Sci Forum. 530-531, 334-339 (2006).
  • [6] W. Piekarska, M. Kubiak, Z. Saternus, Arch Metall Mater. 57, (4), 1219-1227 (2012).
  • [7] J. Krawczyk, P. Bała, Arch Metall Mater. 54, (1), 233-239 (2009).
  • [8] K. Labisz, Mat.-wiss. u. Werkstofftech. 45, 314-324 (2014), DOI: 10.1002/mawe.201400231.
  • [9] S. Rusz, J. Dutkiewicz, M. Faryna, W. Maziarz, Ł. Rogal, J. Bogucka, K. Malanik, J. Kedroň, S. Tylšar, Sol St Phen. 186, 94-97 (2012).
  • [10] T. Tański, Mat.-wiss. u. Werkstofftech. 45 (5), 333-343 (2014).
  • [11] A. Lisiecki, Metals. 5 (1) 54-69 (2015), DOI:10.3390/ met5010054.
  • [12] T. Tański, K. Labisz, B. Krupińska, M. Krupiński, M. Król, R. Maniara, W. Borek, J Therm Anal Calorim. 123 (1), 63-74 (2016).
  • [13] A. Zieliński, G. Golański, M. Sroka, Kovove Mater. 54, (1), 51-58 (2016).
  • [14] L. W. Żukowska, A. Śliwa, J. Mikuła, M. Bonek, W. Kwaśny, M. Sroka, D. Pakuła, Arch Metall Mater, 61, (1), (2016).
  • [15] L. A. Dobrzański, W. Borek, Mater Sci Forum. 706-709, 2053-2058 (2012).
  • [16] G. Bilir, G. Eryürek, Ceram. Int. 42 (5), 6065-6071 (2016).
  • [17] F. Li, Z. Gao, L. Li, Y. Chen, Opt. Laser Technol. 77, 134-143 (2016).
  • [18] Y. Fu, J. Li, Y. Liu, L. Liu, H. Zhao, Y. Pan, Ceramics Internat. 41 (10), 12535-12542 (2015).
  • [19] M. Vlasova, M. Kakazey, P.A. Márquez Aguilar, V. Stetsenko, A. Bykov, S. Lakiza, J Alloy Compd.. 586 (1), 199-204 (2014).
  • [20] F. Niu, D. Wu, S. Zhou, G. Ma, Journal of the European Ceramic Society. 34 (15), 3811-3817.
  • [21] T. Hwa-Hsing, Ch. Ming-Lu , Y. Hsiao-Chuan, Journal of the European Ceramic Society. 31 (8), 1383-1388 (2011).
  • [22] M. C. Mesa, P.B. Oliete, J.Y. Pastor, A. Martín, J. Llorca, Journal of the European Ceramic Society. 34 (9), 2081-2087 (2014).
  • [23] L. Kun, L. Yayiang, J. Wang, M. Qunshuang, L. Li, L. Xinyue, J Alloy Compd. 647 (25) 41-49 (2015).
  • [24] K. Dai, L. Shaw, Acta Mater. 52 (1), 69-80 (2004).
  • [25] J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, I. Aggarwal, Optical Mater. 35 (4), 693-699 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c7a33bf-2f06-4138-8457-9fc344833007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.