PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The influence of atmospheric conditions on the migration of diesel fuel spilled in soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most common chemical’s spills in typical transportation accidents are those with petroleum products such as diesel fuel, the consequence of which is an extensive pollution of the soil. In order to plan properly fuel recovery from the soil, it is important to gain information about the soil depth which may be affected by pollutant and to predict the pollutant concentration in different soil layers. This study deals with the impact of basic atmospheric conditions, i.e. air temperature and humidity on the diesel fuel migration through the soil. The diesel fuel was spilled into columns (L = 30 cm; D = 4.6 cm) filled with sandy and clay soil samples, and its concentrations at various depths were measured after 11 days under various air temperature (20 and 40°C) and relative humidity (30–100%) conditions. The effects observed were explained by understanding physical processes, such as fuel evaporation, diffusion and adsorption on soil grains. The increase in temperature results in higher fuel evaporation loss and its faster vertical migration. The relative humidity effect is less pronounced but more complex, and it depends much on the soil type.
Słowa kluczowe
Rocznik
Strony
73--79
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • University of Defense, Military Academy, Serbia
  • University of Defense, Military Academy, Serbia
autor
  • University of Defense, Military Academy, Serbia
autor
  • University of Defense, Military Academy, Serbia
  • University of Defense, Military Academy, Serbia
autor
  • University of Defense, Military Academy, Serbia
Bibliografia
  • [1]. Adam, G., Gamoh, K., Morris, D.G. & Duncan, H. (2002). Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil, Science of the Total Environment, 286, 1–3, pp. 15–25.
  • [2]. Aertsens, M., Cannière, P.D., Lemmens, K., Maes, N. & Moors, H. (2008). Overview and consistency of migration experiments in clay, Physics and Chemistry of the Earth, 33, pp. 1019–1025.
  • [3]. Brost, E.J & DeVaull, G.E. (2000). Non-aqueous phase liquid (NAPL) mobility limits in soil, Soil and Groundwater Research Bulletin, 9, pp. 1–9.
  • [4]. Cabbar, H.C. & Bostanci, A. (2001). Moisture effect on the transport of organic vapors in sand, Journal of Hazardous Materials, 82, 3, pp. 313–322.
  • [5]. Cheng, C. & Chen, X. (2007). Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to river, Hydrogeology Journal, 15, 4, pp. 669–678.
  • [6]. Halmemies, S., Gröndahl, S., Arffman, M., Nenonen, K. & Tuhkanen, T. (2003). Vacuum extraction based response equipment for recovery of fresh fuel spills from soil, Journal of Hazardous Materials, 97, 2–3, pp. 127–143.
  • [7]. Islam, M.N., Park, H.S. & Park, J.H. (2015). Extraction of diesel from contaminated soil using subcritical water, Environmental Earth Sciences, DOI 10.1007/s12665-015-4338-2.
  • [8]. Leij, F.J., Sciortino, A., Dane, J. & Naylor, M. (2011). Hydraulic properties of soils subjected to aqueous solutions with diesel or ethanol-blended diesel, Geoderma 162, 3–4, pp. 288–295.
  • [9]. Ma, Y., Zheng, X., Anderson, S.H., Lu, J. & Feng, X. (2014). Diesel oil volatilization processes affected by selected porous media, Chemosphere, 99, pp. 192–198.
  • [10]. Mao, X., Jiang, R., Xiao, W. & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: A review, Journal of Hazardous Materials, 285, pp. 419–435.
  • [11]. Markowicz, A., Płaza, G. & Piotrowska-Seget, Z. (2016). Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils, Archives of Environmental Protection, 42, 4, pp. 3–11.
  • [12]. Odong, J. (2008). Evaluation of the empirical formulae for determination of hydraulic conductivity based on grain size analysis, The Journal of American Science, 4, 1, pp. 1–6.
  • [13]. Roon, A., Parsons, J.R., Krap, L. & Govers, H.A.J. (2005). Fate and transport of monoterpenes through soils. Part II: Calculation of the effect of soil temperature, water saturation and organic carbon content, Chemosphere, 61, 1, pp. 129–138.
  • [14]. Rosik-Dulewska, C., Ciesielczuk, T. & Krysiński, M. (2012). Organic pollutants in groundwater in the former airbase, Archives of Environmental Protection, 38, 1, pp. 27–34.
  • [15]. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment, Archives of Environmental Protection, 42, 3, pp. 87–95.
  • [16]. Tzovolou, D.N., Benoit, Y., Haeseler, F., Klint, K.E. & Tsakiroglou, C.D. (2009). Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil, Science of the Total Environment, 407, 8, pp. 3044–3054.
  • [17]. Zawierucha, I., Malina, G., Ciesielski, W. & Rychter, P. (2014). Effectiveness of intrinsic biodegradation enhancement in oil hydrocarbons contaminated soil, Archives of Environmental Protection, 40, 1, pp. 101–113.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c79f993-2620-4f42-a8a4-bd8bf7b79322
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.