PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Efficiency of Filters Filled with Rockfos for Phosphorus Removal from Domestic Sewage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the present study was to evaluate the efficiency of filters filled with Rockfos for removal of phosphorus (Total-P) from domestic wastewater using, Rockfos is a material obtained by calcination of carbonate-silica rock (opoka) at a temperature of 900 °C. A field study was conducted in two filters with volumes of 2.0 and 0.8 m3 which were components of hybrid constructed wetlands with an average capacity of 2.0 m3/L, located in two national parks in south eastern Poland. Samples of the influent to and the effluent from the filters were analyzed for Total-P concentrations and pH. Eighty sewage samples were tested over a five year study period. It was shown that the test filters removed Total-P with an average efficiency of 31.5% and 30.2% and that they could be successfully used to remove P from domestic wastewater in small wastewater treatment plants.
Twórcy
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
  • Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
Bibliografia
  • 1. Sutton M., Howard C., Erisman J.W., Billen G., Bleeker A., Greenfelt P., van Grinsven H., Grizzetti B. The European Nitrogen Assessment. Cambridge University Press, Cambridge, 2011.
  • 2. Grizzetti B., Vigiak O., Udias A., Aloe A., Zanni M., Bouraoui F., Pistocchi A., Dorati C., Friedland R., De Roo A., Benitez Sanz C., Leip A., Bielza M. How EU policies could reduce nutrient pollution in European inland and coastal waters, Global Environmental Change 2021; 69, 102281.
  • 3. Poikane S., Kelly M.G., Salas Herrero F., Pitt J.-A., Jarvie H.P., Claussen U., Leujak W., Lyche Solheim A., Teixeira H., Phillips G. Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook, Sci. Total Environ. 2019; 695, Article 133888, 10.1016/j.scitotenv.2019.133888.
  • 4. Culhane F., Teixeira H., Nogueira A.J.A., Borgwardt F., Trauner D., Lillebø A., Piet G., Kuemmerlen M., McDonald H., O’Higgins T., Barbosa A.L., van der Wal J.T., Iglesias-Campos A., Arevalo-Torres J., Barbière J., Robinson L.A. Risk to the supply of ecosystem services across aquatic ecosystems Sci. Total Environ. 2019; 660: 611–621, 10.1016/j.scitotenv.2018.12.346.
  • 5. Grizzetti B., Lanzanova D., Liquete C., Reynaud A., Cardoso A.C. Assessing water ecosystem services for water resource management, Environ. Sci. Policy 2016; 61, 10.1016/j.envsci.2016.04.008.
  • 6. Liquete C., Piroddi C., Macías D., Druon J.N., Zulian G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches, Sci. Rep. 2016; 6, 10.1038/srep34162.
  • 7. Piroddi C., Coll M., Liquete C., Macias D., Greer K., Buszowski J., Steenbeek J., Danovaro R., Christensen V. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time, Sci. Rep. 2017; 7, 10.1038/srep44491.
  • 8. Paluch J., Paruch A., Pulikowski K. Wstępne wyniki badań oczyszczalni zagrodowej typu ORP (Preliminary results of a study on the orp type sewage treatment plant). Woda-Środowisko-Obszary Wiejskie 2006. 6, Iss. 1(16): 297–305 (in Polish).
  • 9. Pawęska K., Kuczewski K. Zmiany stężenia fosforu ogólnego w ściekach oczyszczonych odpływających z oczyszczalni roślinno-glebowej po nawodnieniu (Changes of total phosphorus concentrations in treated sewage flowing out of artificial wetland after irrigation). Woda-Środowisko-Obszary Wiejskie 2007; 7, Iss. 2b 21): 121–128 (in Polish).
  • 10. Jóźwiakowski K. Badania skuteczności oczyszczania ścieków w wybranych systemach gruntowo-roślinnych (Studies on the efficiency of sewage treatment in choosen constructed wetland systems). Monografia. Post-doctoral dissertation. Infrastruktura i Ekologia Terenów Wiejskich, No. 1, 232, 2012 (in Polish).
  • 11. Mayer R.E., Bofill-Mas S., Egle L., Reischer G.H., Schade M., Fernandez-Cassi X., Fuchs W., Mach R.L., Lindner G., Kirschner A., Gaisbauer M., Piringer H., Blaschke A.P., Girones R., Zessner M., Sommer R., Farnleitner A.H. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. Water Res. 2016; 90: 265–276.
  • 12. Council Directive of 21 May 1991 concerning urban waste-water treatment (91/271/EEC), OJL 135 of 30 May 1991, with amendments.
  • 13. Journal of Laws 2019 item 1311 Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and conditions to be met when discharging sewage into waters or into the ground, as well as when discharging rainwater or meltwater into waters or into water facilities.
  • 14. HELCOM (2007) HELCOM recommendation 28E/5. HELCOM, Helsinki, Finalnd.
  • 15. Preisner M., Neverova-Dziopak E., Kowalewski Z. An Analytical Review of Different Approaches to Wastewater Discharge Standards with Particular Emphasis on Nutrients Environmental Management 2020; 66: 694–708; https://doi.org/10.1007/s00267–020–01344-y.
  • 16. Johansson L.. Industrial by-products and natural substrata as phosphorous sorbents. Environ. Tech. 1999; 20: 309–316.
  • 17. Johansson Westholm L. Substrates for phosphorus removal – Potential benefits for on-site wastewater treatment? Water Res. 2006; 40: 23–36.
  • 18. Zhu T., Mæhlum T., Jenssen P.D., Krogstad T. Phosphorus sorption characteristics of light-weight aggregate. Water Sci. Technol. 2003; 48: 93–100.
  • 19. Heistad A., Paruch A. M., Vråle L., Adam K., Jenssen P. D. A high-performance compact filter system treating domestic wastewater. Ecological Engineering 2006; 28, no. 4: 374–379.
  • 20. Öövel M., Tooming A., Mauring T., Mander Ü. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol. Eng 2007; 29: 17–26.
  • 21. Jenssen P.D., Krogstad T. Design of constructed wetlands using phosphorus sorbing lightweight aggregate (LWA). In: Mander, U., Jenssen, P.D. (Eds.), Constructed Wetlands for Wastewater Treatment in Cold Climates, Advances in Ecological Sciences, 2003; 11. WIT Press, Southampton, Boston, 259–272.
  • 22. Vohla C., Kõiv M., Bavor H. J., Chazarenc F., Mander Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands–A review. Ecological Engineering 2011; 37 (1): 70–89.
  • 23. Wood R.B., McAtamney C.F. Constructed wetlands for waste water treatment: the use of laterite in the bed medium in phosphorus and heavy metal removal. Hydrobiologia 1996; 340: 323–331.
  • 24. Kõiv M., Kriipsalu M., Vohla C., Mander Ü. The secondary treatment of landfill leachate in vertical flow filters using hydrated oil shale ash and peat. Fresen. Environ. Bull. 2009a; 18: 189–195.
  • 25. Kõiv M., Vohla C., Mõtlep R., Liira M., Kirsimäe K., Mander Ü. The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater. Ecol. Eng. 2009b; 35: 204–212.
  • 26. Pant H.K., Reddy K.R., Lemon E. Phosphorus retention capacity of root bed media of subsurface flow constructed wetlands. Ecol. Eng. 2001; 17: 345–355.
  • 27. Karaca S., Gürses A., Ejder M., Ac ̧ ıkyıldız M. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 2004; 277: 257–263.
  • 28. Zhou M., Li Y. Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and Adjacent Farmlands. Soil Sci. Soc. Am. J. 2001; 65: 1404–1412.
  • 29. Arias C.A., Brix H., Johansen N.H. Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. IWA Publishing, Water Science & Technology 2003, 48(5): 51–58.
  • 30. Brogowski Z., Renman G. Characterization of Opoka as a Basis for its Use in Wastewater Treatment. Polish Journal of Environmental Studies 2004, 13(1): 15–20.
  • 31. Westholm J. L. Substrate for P Removal – Potential Benefits for On-site Wastewater Treatment? Water Research 2006; 40: 23–36.
  • 32. Jóźwiakowski K., Marzec M., Gizińska-Górna M., Pytka A., Skwarzyńska A., Słowik T., Kowalczyk-Juśko A., Gajewska M., Steszuk A., Grabowski T., Szawara Z. The Concept of Construction of Hybrid Constructed Wetland for Wastewater Treatment in Roztocze National Park. Barometr Regionalny. Analizy i prognozy 2014; 12(4): 91–102.
  • 33. Jóźwiakowski K., Gajewska M., Marzec M., Gizińska-Górna M., Pytka A., Kowalczyk-Juśko A., Sosnowska B., Baran S., Malik A., Kufel R. Hybrid constructed wetlands for the National Parks – a case study, requirements, dimensioning, preliminary results. In: Natural and Constructed Wetlands 2016. Nutrients, heavy metals and energy cycling, and flow. Springer International Publishing Switzerland, Vymazal, J. (Eds.): 247–265.
  • 34. Jóźwiakowski K. Próba zwiększenia skuteczności usuwania fosforu w modelu oczyszczalni ścieków (Experiment of increasing effectiveness of phosphorus removal in a model of wastewater treatment plant). Inżynieria Rolnicza 2006; 10: 249–256 (in Polish).
  • 35. Karczmarczyk A., Mosiej J. Możliwość zwiększenia efektywności usuwania fosforu w hydrofitowych systemach oczyszczania ścieków (Upgrading Of Phosphorus Removal From Waste-water In Constructed Wetlands). Zeszyty Naukowe Politechniki Białostockiej, Inżynieria Środowiska 2003; 16, no. II: 227–232 (in Polish).
  • 36. Renman A. On-site wastewater treatment-Polonite and other filter materials for removal of metals, nitrogen and phosphorus TRITA-LWR PHD 1043. Doctoral Thesis, Department of Land and Water Resources. Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008.
  • 37. Cucarella V. Recycling filter substrates used for phosphorous removal from wastewater as soil amendments. Doctoral Thesis, Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2009.
  • 38. Cucarella V., Zaleski T., Mazurek R. Phosphorus sorption capacity of different types of opoka. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 2007; 38: 11–18.
  • 39. Bus A., Karczmarczyk A. Charakterystyka skały wapienno-krzemionkowej opoki w aspekcie jej wykorzystania jako materiału reaktywnego do usuwania fosforu z wód i ścieków (Properties of lime-siliceous rock opoka as reactive material to remove phosphorous from water and wastewater). Infrastruktura i Ekologia Terenów Wiejskich 2014; No II/1/2014: 227–238 (in Polish).
  • 40. Bus A., Karczmarczyk A. Kinetic and sorption equilibrium studies on phosphorus removal from natural swimming ponds by selected reactive materials. Fresenius Environmental Bulletin 2015; 24(9): 2736–2741.
  • 41. Kasprzyk M., Gajewska M. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Science of the Total Environment 2019; 650: 249–256.
  • 42. Kasprzyk M., Węgler J., Gajewska M. Analysis of efficiency of phosphates sorption by different granulation of selected reactive material. In E3S Web of Conferences 2018; 26, p. 00002. EDP Sciences.
  • 43. Karczmarczyk A., Bus A. Testing of reactive materials for phosphorus removal from water and wastewater-comparative study. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation 2014; 46(1): 57–67.
  • 44. Klimeski A., Chardon W. J., Turtola E., Uusitalo R. Potential and limitations of phosphate retention media in water protection: A process-based review of laboratory and field-scale tests. Agricultural and food science 2012; 21(3): 206–223.
  • 45. PN-74/C-04620/00, Woda i ścieki – Pobieranie próbek – Postanowienie ogólne i zakres normy (Water and wastewater – Sampling – General provision and scope of the standard).
  • 46. PN-EN ISO 10523: 2012 Jakość wody – Oznaczanie pH (Water quality – pH determination).
  • 47. PN-EN ISO 6878: 2006 pkt. 8 Ap1:2010+Ap2:2010 – Oznaczanie fosforu. Metoda spektrometryczna z molibdenianem amonu. Oznaczanie fosforu ogólnego po mineralizacji z kwasem azotowym i kwasem siarkowym (Determination of phosphorus. Spectrometric method with ammonium molybdate. Determination of total phosphorus after mineralization with nitric acid and sulfuric acid).
  • 48. Chmielowski K., Satora S., Wałęga A. Ocena niezawodności działania oczyszczalni ścieków dla gminy Tuchów (Evaluation of the reliability of the sewage treatment plant for the commune of Tuchow). Infrastruktura I Ekologia Terenów Wiejskich 2009; No. 9: 63–72 (in Polish).
  • 49. Mucha J. Metody geostatystyczne w dokumentowaniu złóż (Geostatistical methods for deposit documentation). Skrypt, Katedra Geologii Kopalnianej. AGH Kraków, 1994 (in Polish).
  • 50. Albright M. F., Waterfield H. A. Evaluating phosphorus-removal media for use in onsite wastewater treatment systems (interim report). In: 42nd Ann. Rept. (2009). SUNY OneontaBiol. Fld. Sta., SUNY Oneonta, 2010.
  • 51. Renman A., Renman G. Long-term phosphate removal by the calcium-silicate material Polonite in wastewater filtration systems. Chemosphere 2010; 79, No. 6: 659–664.
  • 52. ISRN LUTVDG/TVVR-08/5012, 20.
  • 53. Nilsson Ch., Lakshmanan R., Renman G., Rajarao G. K. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal – Column experiment in recirculation batch mode. Water Research 2013a; 47(14): 5165–5175.
  • 54. Nilsson Ch., Renman G., Johansson Westholm L., Renman A., Drizo A. Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials. Water Research 2013b; 47: 6289–6297.
  • 55. Vidal B, Hedström A, Herrmann I. Phosphorus reduction in filters for on-site wastewater treatment, Journal of Water Process Engineering 2018; 22: 210–217.
  • 56. Nelin C. Evaluation of using fine grain size Polonite® as sorbent for retaining phosphorus from wastewater (a master’s thesis published online). Lund Institute of Technology 2008.
  • 57. Cucarella V., Renman G. Phosphorus Sorption Capacity of Filter Materials Used for On-Site Waste-water Treatment Determined in Batch Experiments – A Comparative Study. J. Environ. Qual. 2009; 38: 381–392.
  • 58. Song Y., Hahn H.H., Hoffmann E., Weidler P.G. Effect of humic substances on the precipitation of calcium phosphate. J. Environ. Sci. 2006; 18: 852–857.
  • 59. Gustafsson J. P., Renman A., Renman G., Poll K. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Research 2009; 42, No. 1: 189–197.
  • 60. Jenssen P.D., Krogstad T., Paruch A.M., Mæhlum T., Adam K., Arias C.A., Heistad A., Jonsson L., Hellström D., Brix H., Yli-Halla M., Vråle L., Valve M. Filter bed systems treating domestic wastewater in the Nordic countries – Performance and reuse of filter media. Ecological Engineering 2010; 36 (12): 1651–1659.
  • 61. Karczmarczyk A. Analiza przydatności naturalnych sorbentów do usuwania fosforu w lokalnych systemach oczyszczania ścieków (Analysis of the suitability of natural sorbents for phosphorus removal in local wastewater treatment systems; an unpublished summarising report of a doctoral dissertation: 1–17), Wydział Inżynierii i Kształtowania Środowiska, Katedra Kształtowania Środowiska, SGGW, Warszawa 2003 (in Polish).
  • 62. Saltnes T., Føllesdal M. Final Report: Material Development. 02056 Wastewater treatment in filter beds, maxit Group AB, 2005.
  • 63. Liira M., Koiv M., Mander U., Motlep R., Vohla C., Kirsimae K. Active filtration of phosphorus on Ca-rich hydrated oil-shale ash: does longer retention time improve the process? Environ. Sci. Technol. 2009; 43: 3809–3814.
  • 64. Arias C.A., Del Bubba M., Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research 2001; 35 (5): 1159–1168.
  • 65. Drizo A., Comeau Y., Forget C., Chapuis R.P. Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems. Environ. Sci. Technol. 2002; 36: 4642–4648.
  • 66. Hedstrom A. Wollastonite as a reactive filter medium for sorption of wastewater ammonium and phosphorus. Environ. Technol. 2006; 27: 801–809.
  • 67. Brix H., Arias C.A., Del Bubba M. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Sci. Technol. 2001; 44 (11–12): 47–54.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c77fa18-9735-445b-a6f8-07dd12b87e64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.